您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 人教版八年级数学下册反比例函数教案
-1-郁南县东坝镇中教案纸2008年月日星期授课教师科目数学班别八()教学内容17.1.1反比例函数的意义课型新授教学目的1.使学生理解并掌握反比例函数的概念2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想重点理解反比例函数的概念,能根据已知条件写出函数解析式难点理解反比例函数的概念教学方法讲授,练习。教具教学过程个性调整一,课堂引入1.回忆一下什么是正比例函数、一次函数?它们的一般形式是怎样的2.体育课上,老师测试了百米赛跑,那么,时间与平均速度的关系是怎样的?二,讲解例题例1.见教材P47分析:因为y是x的反比例函数,所以先设xky,再把x=2和y=6代入上式求出常数k,即利用了待定系数法确定函数解析式。-2-例1.(补充)下列等式中,哪些是反比例函数(1)3xy(2)xy2(3)xy=21(4)25xy(5)xy23(6)31xy(7)y=x-4分析:根据反比例函数的定义,关键看上面各式能否改写成xky(k为常数,k≠0)的形式,这里(1)、(7)是整式,(4)的分母不是只单独含x,(6)改写后是xxy31,分子不是常数,只有(2)、(3)、(5)能写成定义的形式例2.(补充)当m取什么值时,函数23)2(mxmy是反比例函数?-3-分析:反比例函数xky(k≠0)的另一种表达式是1kxy(k≠0),后一种写法中x的次数是-1,因此m的取值必须满足两个条件,即m-2≠0且3-m2=-1,特别注意不要遗漏k≠0这一条件,也要防止出现3-m2=1的错误。解得m=-2三,随堂练习1.苹果每千克x元,花10元钱可买y千克的苹果,则y与x之间的函数关系式为2.若函数28)3(mxmy是反比例函数,则m的取值是3.矩形的面积为4,一条边的长为x,另一条边的长为y,则y与x的函数解析式为4.已知y与x成反比例,且当x=-2时,y=3,则y与x之间的函数关-4-系式是,当x=-3时,y=5.函数21xy中自变量x的取值范围是四,作业已知函数y=y1+y2,y1与x+1成正比例,y2与x成反比例,且当x=1时,y=0;当x=4时,y=9,求当x=-1时y的值答案:y=4板书设计课后反思-5-郁南县东坝镇中教案纸2008年月日星期授课教师科目数学班别八()教学内容17.1.2反比例函数的图象和性质(1)课型新授教学目的1.会用描点法画反比例函数的图象2.结合图象分析并掌握反比例函数的性质3.体会函数的三种表示方法,领会数形结合的思想方法重点理解并掌握反比例函数的图象和性质难点正确画出图象,通过观察、分析,归纳出反比例函数的性质教学方法教具教学过程个性调整-6-一、课堂引入提出问题:1.一次函数y=kx+b(k、b是常数,k≠0)的图象是什么?其性质有哪些?正比例函数y=kx(k≠0)呢?2.画函数图象的方法是什么?其一般步骤有哪些?应注意什么?3.反比例函数的图象是什么样呢?二、讲解例题例2.见教材P48,用描点法画图,注意强调:(1)列表取值时,x≠0,因为x=0函数无意义,为了使描出的点具有代表性,可以“0”为中心,向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求y值(2)由于函数图象的特征还不清楚,所以要尽量多取一些数值,多描一些点,这样便于连线,使画出的图象更精确(3)连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线(4)由于x≠0,k≠0,所以y≠0,函数图象永远不会与x轴、y轴相交,只是无限靠近两坐标轴例1.(补充)已知反比例函数32)1(mxmy的图象在第二、四象限,求m值,并指出在每个象限内y随x的变化情况?分析:此题要考虑两个方面,一是反比例函数的定义,即1kxy(k≠0)自变量x的指数是-1,二是根据反比例函数的性质:当图象位于第二、四象限时,k<0,则m-1<0,不要忽视这个条件略解:∵32)1(mxmy是反比例函数∴m2-3=-1,且m-1≠0又∵图象在第二、四象限∴m-1<0解得2m且m<1则2m三、随堂练习1.已知反比例函数xky3,分别根据下列条件求出字母k的取值范围(1)函数图象位于第一、三象限(2)在第二象限内,y随x的增大而增大2.函数y=-ax+a与xay(a≠0)在同一坐标系中的图象可能是()四、课后练习1.若函数xmy)12(与xmy3的图象交于第一、三象限,则m的取值范围是-7-2.反比例函数xy2,当x=-2时,y=;当x<-2时;y的取值范围是;当x>-2时;y的取值范围是3.已知反比例函数yaxa()226,当x0时,y随x的增大而增大,求函数关系式答案:3.xya25,5五布置作业板书设计课后反思-8-郁南县东坝镇中教案纸2008年月日星期授课教师科目数学班别八()教学内容17.1.2反比例函数的图象和性质(2)课型新授教学目的1.使学生进一步理解和掌握反比例函数及其图象与性质2.能灵活运用函数图象和性质解决一些较综合的问题3.深刻领会函数解析式与函数图象之间的联系,体会数形结合及转化的思想方法重点理解并掌握反比例函数的图象和性质,并能利用它们解决一些综合问题难点学会从图象上分析、解决问题教学方法教具教学过程个性调整一、课堂引入复习上节课所学的内容1.什么是反比例函数?2.反比例函数的图象是什么?有什么性质?二、新课讲授例3.见教材P51分析:反比例函数xky的图象位置及y随x的变化情况取决于常数k的符号,因此要先求常数k,而题中已知图象经过点A(2,6),即表明把A点坐标代入解析式成立,所以用待定系数法能求出k,这样解析式也就确定了。例4.见教材P52教材第51页的例3一是让学生理解点在图象上的含义,掌握如何用待定系数法去求解析式,复习巩固反比例函数的意义;二是通过函数解析式去分析图象及性质,由“数”到“形”,体会数形结合思想,加深学生对反比例函数图象和性质的理解。教材第52页的例4是已知函数图象求解析式中的未知系数,并由双曲线的变化趋势分析函数值y随x的变化情况,此过程是由“形”到“数”,目的是为了提高学生从函数图象中获取信息的能力,加深对函数图象及性质的理解。三、随堂练习1.若直线y=kx+b经过第一、二、四象限,则函数xkby的图象在()(A)第一、三象限(B)第二、四象限(C)第三、四象限(D)第一、二象限2.已知点(-1,y1)、(2,y2)、(π,y3)在双曲线xky12上,则-9-下列关系式正确的是()(A)y1>y2>y3(B)y1>y3>y2(C)y2>y1>y3(D)y3>y1>y2四、课后练习1.已知反比例函数xky12的图象在每个象限内函数值y随自变量x的增大而减小,且k的值还满足)12(29k≥2k-1,若k为整数,求反比例函数的解析式2.已知一次函数bkxy的图像与反比例函数xy8的图像交于A、B两点,且点A的横坐标和点B的纵坐标都是-2,求(1)一次函数的解析式;(2)△AOB的面积答案:1.xy1或xy3或xy52.(1)y=-x+2,(2)面积为6五,布置作业板书设计课后反思-10-郁南县东坝镇中教案纸2008年月日星期授课教师科目数学班别八()教学内容17.2实际问题与反比例函数(1)课型新授教学目的1.利用反比例函数的知识分析、解决实际问题2.渗透数形结合思想,提高学生用函数观点解决问题的能力重点利用反比例函数的知识分析、解决实际问题难点分析实际问题中的数量关系,正确写出函数解析式教学方法教具教学过程个性调整一、课堂引入寒假到了,小明正与几个同伴在结冰的河面上溜冰,突然发现前面有一处冰出现了裂痕,小明立即告诉同伴分散趴在冰面上,匍匐离开了危险区。你能解释一下小明这样做的道理吗?二、讲解例题例1.见教材第57页分析:(1)问首先要弄清此题中各数量间的关系,容积为104,底面积是S,深度为d,满足基本公式:圆柱的体积=底面积×高,由题意知S是函数,d是自变量,改写后所得的函数关系式是反比例函数的形式,(2)问实际上是已知函数S的值,求自变量d的取值,(3)问则是与(2)相反例2.见教材第58页分析:此题类似应用题中的“工程问题”,关系式为工作总量=工作速度×工作时间,由于题目中货物总量是不变的,两个变量分别是速度v和时间t,因此具有反比关系,(2)问涉及了反比例函数的增减性,即当自变量t取最大值时,函数值v取最小值是多少?(补充)某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(千帕)是气体体积V(立方米)的反比例函数,其图像如图所示(千帕是一种压强单位)(1)写出这个函数的解析式;(2)当气球的体积是0.8立方米时,气球内的气压是多少千帕?(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米?分析:题中已知变量P与V是反比例函数关系,并且图象经过点A,利用待定系数法可以求出P与V的解析式,得VP96,(3)问中当P大于144千帕时,气球会爆炸,即当P不超过144千帕时,是安全范围。根据反比例函数的图象和性质,P随V的增大而减小,可先求出气压P=144千帕时所对应的气-11-体体积,再分析出最后结果是不小于32立方米三、随堂练习1.京沈高速公路全长658km,汽车沿京沈高速公路从沈阳驶往北京,则汽车行完全程所需时间t(h)与行驶的平均速度v(km/h)之间的函数关系式为2.完成某项任务可获得500元报酬,考虑由x人完成这项任务,试写出人均报酬y(元)与人数x(人)之间的函数关系式3.一定质量的氧气,它的密度(kg/m3)是它的体积V(m3)的反比例函数,当V=10时,=1.43,(1)求与V的函数关系式;(2)求当V=2时氧气的密度答案:=V3.14,当V=2时,=7.15四、课后练习1.小林家离工作单位的距离为3600米,他每天骑自行车上班时的速度为v(米/分),所需时间为t(分)(1)则速度v与时间t之间有怎样的函数关系?(2)若小林到单位用15分钟,那么他骑车的平均速度是多少?(2)如果小林骑车的速度最快为300米/分,那他至少需要几分钟到达单位?答案:tv3600,v=240,t=122.学校锅炉旁建有一个储煤库,开学初购进一批煤,现在知道:按每天用煤0.6吨计算,一学期(按150天计算)刚好用完.若每天的耗煤量为x吨,那么这批煤能维持y天(1)则y与x之间有怎样的函数关系?(2)画函数图象(3)若每天节约0.1吨,则这批煤能维持多少天?板书设计课后反思-12-郁南县东坝镇中教案纸2008年月日星期授课教师科目数学班别八()教学内容17.2实际问题与反比例函数(2)课型新授教学目的1.利用反比例函数的知识分析、解决实际问题2.渗透数形结合思想,进一步提高学生用函数观点解决问题的能力,体会和认识反比例函数这一数学模型重点利用反比例函数的知识分析、解决实际问题难点分析实际问题中的数量关系,正确写出函数解析式,解决实际问题教学方法教具教学过程个性调整一、例题的意图分析教材第58页的例3和例4都需要用到物理知识,教材在例题前已给出了相关的基本公式,其中的数量关系具有反比例关系,通过对这两个问题的分析和解决,不但能复习巩固反比例函数的有关知识,还能培养学生应用数学的意识补充例题是一道综合题,有一定难度,需要学生有较强的识图、分析和归纳等方面的能力,此题既有一次函数的知识,又有反比例函数的知识,能进一步深化学生对一次函数和反比例函数知识的理解和掌握,体会数形结合思想的重要作用,同时提高学生灵活运用函数观点去分析和解决实际问题的能力二、课堂引入1.小明家新买了几桶墙面漆,准备重新粉刷墙壁,请问如何打开这些未开封的墙面漆桶呢?其原理是什么?2.台灯的亮度、电风扇的转速都可以调节,你能说出其中的道理吗?三、新课讲授例3.见教材第58页分析:题中已知阻力与阻力臂不变,即阻力与阻力臂的积为定值,由“杠杆定律”知变量动力与动力
本文标题:人教版八年级数学下册反比例函数教案
链接地址:https://www.777doc.com/doc-2727139 .html