您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2016年各地中考数学解析版试卷分类汇编(第一期):平面直角坐标系与点的坐标
平面直角坐标系与点的坐标一、选择题1.(2016·湖北咸宁)已知菱形OABC在平面直角坐标系的位置如图所示,顶点A(5,0),OB=45,点P是对角线OB上的一个动点,D(0,1),当CP+DP最短时,点P的坐标为()A.(0,0)B.(1,21)C.(56,53)D.(710,75)【考点】菱形的性质,平面直角坐标系,,轴对称——最短路线问题,三角形相似,勾股定理,动点问题.【分析】点C关于OB的对称点是点A,连接AD,交OB于点P,P即为所求的使CP+DP最短的点;连接CP,解答即可.【解答】解:如图,连接AD,交OB于点P,P即为所求的使CP+DP最短的点;连接CP,AC,AC交OB于点E,过E作EF⊥OA,垂足为F.∵点C关于OB的对称点是点A,∴CP=AP,∴AD即为CP+DP最短;∵四边形OABC是菱形,OB=45,∴OE=21OB=25,AC⊥OB又∵A(5,0),∴在Rt△AEO中,AE=OEOA22=)52(522=5;易知Rt△OEF∽△OAE∴OAOE=AEEF∴EF=OAAEOE=5552=2,∴OF=EFOE22=2)52(22=4.∴E点坐标为E(4,2)设直线OE的解析式为:y=kx,将E(4,2)代入,得y=21x,设直线AD的解析式为:y=kx+b,将A(5,0),D(0,1)代入,得y=-51x+1,∴点P的坐标的方程组y=21x,y=-51x+1,解得x=710,y=75∴点P的坐标为(710,75)故选D.【点评】本题考查了菱形的性质,平面直角坐标系,,轴对称——最短路线问题,三角形相似,勾股定理,动点问题.关于最短路线问题:在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点(注:本题C,D位于OB的同侧).如下图:解决本题的关键:一是找出最短路线,二是根据一次函数与方程组的关系,将两直线的解析式联立方程组,求出交点坐标.2.2016·四川成都·3分)平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A.(﹣2,﹣3)B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)【考点】关于x轴、y轴对称的点的坐标.【分析】直接利用关于x轴对称点的性质,横坐标不变,纵坐标互为相反数,进而得出答案.【解答】解:点P(﹣2,3)关于x轴对称的点的坐标为(﹣2,﹣3).故选:A.3.(2016湖北孝感,6,3分)将含有30°角的直角三角板OAB如图放置在平面直角坐标系中,OB在x轴上,若OA=2,将三角板绕原点O顺时针旋转75°,则点A的对应点A′的坐标为()A.(,﹣1)B.(1,﹣)C.(,﹣)D.(﹣,)【考点】坐标与图形变化-旋转.【分析】先根据题意画出点A′的位置,然后过点A′作A′C⊥OB,接下来依据旋转的定义和性质可得到OA′的长和∠COA′的度数,最后依据特殊锐角三角函数值求解即可.【解答】解:如图所示:过点A′作A′C⊥OB.∵将三角板绕原点O顺时针旋转75°,∴∠AOA′=75°,OA′=OA.∴∠COA′=45°.∴OC=2×=,CA′=2×=.∴A′的坐标为(,﹣).故选:C.【点评】本题主要考查的是旋转的定义和性质、特殊锐角三角函数值的应用,得到∠COA′=45°是解题的关键.4.(2016·广西贺州)如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(﹣2,5)的对应点A′的坐标是()A.(2,5)B.(5,2)C.(2,﹣5)D.(5,﹣2)【考点】坐标与图形变化-旋转.【分析】由线段AB绕点O顺时针旋转90°得到线段A′B′可以得出△ABO≌△A′B′O′,∠AOA′=90°,作AC⊥y轴于C,A′C′⊥x轴于C′,就可以得出△ACO≌△A′C′O,就可以得出AC=A′C′,CO=C′O,由A的坐标就可以求出结论.【解答】解:∵线段AB绕点O顺时针旋转90°得到线段A′B′,∴△ABO≌△A′B′O′,∠AOA′=90°,∴AO=A′O.作AC⊥y轴于C,A′C′⊥x轴于C′,∴∠ACO=∠A′C′O=90°.∵∠COC′=90°,∴∠AOA′﹣∠COA′=∠COC′﹣∠COA′,∴∠AOC=∠A′OC′.在△ACO和△A′C′O中,,∴△ACO≌△A′C′O(AAS),∴AC=A′C′,CO=C′O.∵A(﹣2,5),∴AC=2,CO=5,∴A′C′=2,OC′=5,∴A′(5,2).故选:B.【点评】本题考查了旋转的性质的运用,全等三角形的判定及性质的运用,等式的性质的运用,点的坐标的运用,解答时证明三角形全等是关键.5.(2016·山东枣庄)已知点P(a+1,2a+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是【答案】C.考点:点的坐标;不等式组的解集.6、(2016广东,7,3分)在平面直角坐标系中,点P(-2,-3)所在的象限是()A、第一象限B、第二象限C、第三象限D、第四象限答案:C考点:平面直角坐标。解析:因为点P的横坐标与纵坐标都是负数,所以,点P在第三象限。2.(2016大连,,2,3分)在平面直角坐标系中,点(1,5)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据各象限内点的坐标特征解答即可.【解答】解:点(1,5)所在的象限是第一象限.故选A.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).二、填空题1.(2016·广东茂名)如图,在平面直角坐标系中,将△ABO绕点B顺时针旋转到△A1BO1的位置,使点A的对应点A1落在直线y=x上,再将△A1BO1绕点A1顺时针旋转到△A1B1O2的位置,使点O1的对应点O2落在直线y=x上,依次进行下去…,若点A的坐标是(0,1),点B的坐标是(,1),则点A8的横坐标是.6+6.-2-1210B.-2-1210A.-2-1210C.-3-210-1D.【考点】坐标与图形变化-旋转;一次函数图象与几何变换.【分析】先求出点A2,A4,A6…的横坐标,探究规律即可解决问题.【解答】解:由题意点A2的横坐标(+1),点A4的横坐标3(+1),点A6的横坐标(+1),点A8的横坐标6(+1).故答案为6+6.【点评】本题考查坐标与图形的变换﹣旋转,一次函数图形与几何变换等知识,解题的关键是学会从特殊到一般,探究规律,由规律解决问题,属于中考常考题型.2.(2016·广东梅州)已知点P(3﹣m,m)在第二象限,则m的取值范围是___________.答案:3m考点:平面直角坐标,解不等式组。解析:因为点P在第二象限,所以,300mm,解得:3m3.(2016江苏淮安,11,3分)点A(3,﹣2)关于x轴对称的点的坐标是(3,2).【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称的点的横坐标不变,纵坐标互为相反数解答.【解答】解:点A(3,﹣2)关于x轴对称的点的坐标是(3,2).故答案为:(3,2).【点评】本题考查了关于原点对称的点的坐标,关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:4.(2016·山西)如图是利用网格画出的太原市地铁1,2,3号线路部分规划示意图.若建立适当的平面直角坐标系,表示双塔西街点的坐标为(0,-1),表示桃园路的点的坐标为(-1,0),则表示太原火车站的点(正好在网格点上)的坐标是(3,0).考点:坐标的确定分析:根据双塔西街点的坐标为(0,-1),可知大南门为坐标原点,从而求出太原火车站的点(正好在网格点上)的坐标解答:太原火车站的点(正好在网格点上)的坐标(3,0)5.(2016山东省聊城市,3分)如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…、则正方形OB2015B2016C2016的顶点B2016的坐标是(21008,0).【考点】正方形的性质;规律型:点的坐标.【分析】首先求出B1、B2、B3、B4、B5、B6、B7、B8、B9的坐标,找出这些坐标的之间的规律,然后根据规律计算出点B2016的坐标.【解答】解:∵正方形OA1B1C1边长为1,∴OB1=,∵正方形OB1B2C2是正方形OA1B1C1的对角线OB1为边,∴OB2=2,∴B2点坐标为(0,2),同理可知OB3=2,∴B3点坐标为(﹣2,2),同理可知OB4=4,B4点坐标为(﹣4,0),B5点坐标为(﹣4,﹣4),B6点坐标为(0,﹣8),B7(8,﹣8),B8(16,0)B9(16,16),B10(0,32),由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍,∵2016÷8=252∴B2016的纵横坐标符号与点B8的相同,横坐标为正值,纵坐标是0,∴B2016的坐标为(21008,0).故答案为:(21008,0).【点评】本题主要考查正方形的性质和坐标与图形的性质的知识点,解答本题的关键是由点坐标的规律发现每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍.6.(2016.山东省泰安市,3分)如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形AnBn﹣1Bn顶点Bn的横坐标为2n+1﹣2.【分析】先求出B1、B2、B3…的坐标,探究规律后,即可根据规律解决问题.【解答】解:由题意得OA=OA1=2,∴OB1=OA1=2,B1B2=B1A2=4,B2A3=B2B3=8,∴B1(2,0),B2(6,0),B3(14,0)…,2=22﹣2,6=23﹣2,14=24﹣2,…∴Bn的横坐标为2n+1﹣2.故答案为2n+1﹣2.【点评】本题考查规律型:点的坐标、等腰直角三角形的性质等知识,解题的关键是从特殊到一般,探究规律,利用规律解决问题,属于中考常考题型.7.(2016.山东省威海市,3分)如图,点A1的坐标为(1,0),A2在y轴的正半轴上,且∠A1A2O=30°,过点A2作A2A3⊥A1A2,垂足为A2,交x轴于点A3;过点A3作A3A4⊥A2A3,垂足为A3,交y轴于点A4;过点A4作A4A5⊥A3A4,垂足为A4,交x轴于点A5;过点A5作A5A6⊥A4A5,垂足为A5,交y轴于点A6;…按此规律进行下去,则点A2016的纵坐标为﹣()2015.【考点】坐标与图形性质.【分析】先求出A1、A2、A3、A4、A5坐标,探究规律,利用规律解决问题.【解答】解:∵A1(1,0),A2[0,()1],A3[﹣()2,0].A4[0,﹣()3],A5[()4,0]…,∴序号除以4整除的话在y轴的负半轴上,余数是1在x轴的正半轴上,余数是2在y轴的正半轴上,余数是3在x轴的负半轴上,∵2016÷4=504,∴A2016在y轴的负半轴上,纵坐标为﹣()2015.故答案为﹣()2015.8.(2016·江苏省扬州)以方程组的解为坐标的点(x,y)在第二象限.【考点】二元一次方程组的解;点的坐标.【分析】先求出x、y的值,再根据各象限内点的坐标特点即可得出结论.【解答】解:,∵①﹣②得,3x+1=0,解得x=﹣,把x的值代入②得,y=﹣+1=,∴点(x,y)的坐标为:(﹣,),∴此点在第二象限.故答案为:二.9.(2016•呼和浩特)已知平行四边形ABCD的顶点A在第三象限,对角线AC的中点在坐标原点,一边AB与x轴平行且AB=2,若点A的坐标为(a,b),则
三七文档所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
本文标题:2016年各地中考数学解析版试卷分类汇编(第一期):平面直角坐标系与点的坐标
链接地址:https://www.777doc.com/doc-11123367 .html