您好,欢迎访问三七文档
参考资料,少熬夜!初一数学教案8篇作为一名敬业的人民教师,通常需要准备一份教案,教案是教学的蓝图,能有效提高教学效率。如何突出教案的重点?以下是网友整理的高一数学教案。仅供参考。欢迎你来看。初一数学教案【第一篇】学习目标:理解多项式乘法法则,会利用法则进行简单的多项式乘法运算。学习重点:多项式乘法法则及其应用。学习难点:理解运算法则及其探索过程。一、课前训练:(1)-3a2b+2b2+3a2b-14b2=,(2)-=;(3)3a2b2ab3=,(4)=;(5)-=,(6)=。二、探索练习:(1)如图1大长方形,其面积用四个小长方形面积表示为:;(2)大长方形的长为,宽为,要计算其面积就是,其中包含的运算为。由上面的问题可发现:()()=多项式乘以多项式法则:多项式与多项式相乘,先用一个多项式的以另一个多项式的每一项,再把所得的积。三.运用法则规范解题。四.巩固练习:3.计算:①,4.计算:五.提高拓展练习:5.若求m,n的值.6.已知的结果中不含项和项,求m,n的值.7.计算(a+b+c)(c+d+e),你有什么发现?六.晚间训练:(7)2a2(-a)4+2a45a2(8)3、(1)观察:4×6=2414×16=22424×26=62434×36=1224你发现其中的规律吗?你能用代数式表示这一规律吗?参考资料,少熬夜!(2)利用(1)中的规律计算124×126。4、如图,AB=,P是线段AB上一点,分别以AP,BP为边作正方形。(1)设AP=,求两个正方形的面积之和S;(2)当AP分别时,比较S的大小。初一数学教案【第二篇】一、学情分析:在此之前,本班学生已有探索有理数加法法则的经验,多数学生能在教师指导下探索问题。由于学生已了解利用数轴表示加法运算过程,不太熟悉水位变化,故改为用数轴表示乘法运算过程。二、课前准备把学生按组间同质、组内异质分为10个小组,以便组内合作学习、组间竞争学习,形成良好的学习气氛。三、教学目标1、知识与技能目标掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。2、能力与过程目标经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。3、情感与态度目标通过学生自己探索出法则,让学生获得成功的喜悦。四、教学重点、难点重点:运用有理数乘法法则正确进行计算。难点:有理数乘法法则的探索过程,符号法则及对法则的理解。五、教学过程1、创设问题情景,激发学生的求知欲望,导入新课。教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米?学生:26米。教师:能写出算式吗?学生:……教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题(教师板书课题)2、小组探索、归纳法则(1)教师出示以下问题,学生以组为单位探索。以原点为起点,规定向东的方向为正方向,向西的方向为负方向。a.2×32看作向东运动2米,×3看作向原方向运动3次。参考资料,少熬夜!结果:向运动米2×3=b.-2×3-2看作向西运动2米,×3看作向原方向运动3次。结果:向运动米-2×3=c.2×(-3)2看作向东运动2米,×(-3)看作向反方向运动3次。结果:向运动米2×(-3)=d.(-2)×(-3)-2看作向西运动2米,×(-3)看作向反方向运动3次。结果:向运动米(-2)×(-3)=e.被乘数是零或乘数是零,结果是人仍在原处。(2)学生归纳法则a.符号:在上述4个式子中,我们只看符号,有什么规律?(+)×(+)=同号得(-)×(+)=异号得(+)×(-)=异号得(-)×(-)=同号得b.积的绝对值等于。c.任何数与零相乘,积仍为。(3)师生共同用文字叙述有理数乘法法则。3、运用法则计算,巩固法则。(1)教师按课本P75例1板书,要求学生述说每一步理由。(2)引导学生观察、分析例1中(3)(4)小题两因数的关系,得出两个有理数互为倒数,它们的积为。(3)学生做P76练习1(1)(3),教师评析。(4)教师引导学生做P75例2,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。多个因数相乘,积的符号由决定,当负因数个数有,积为;当负因数个数有,积为;只要有一个因数为零,积就为。4、讨论对比,使学生知识系统化。有理数乘法有理数加法同号得正取相同的符号把绝对值相乘(-2)×(-3)=6把绝对值相加(-2)+(-3)=-5异号得负取绝对值大的加数的符号把绝对值相乘(-2)×3=-6(-2)+3=1用较大的绝对值减小的绝对参考资料,少熬夜!值任何数与零得零得任何数5、分层作业,巩固提高。初一数学教案【第三篇】一、教学目标(一)知识教学点1.了解;方程算术解法与代数解法的区别。2.掌握:代数解法解简易方程。(二)能力训练点1.通过代数解法解简易方程的学习使学生认识问题头脑不僵化,培养其创造性思维的能力。2.通过代数法解简易方程进一步培养学生运算能力和逻辑思维能力。(三)德育渗透点1.培养学生实事求是的科学态度,用发展的眼光看问题的辩证唯物主义思想。2.渗透化“未知”为“已知”的化归思想。(四)美育渗透点通过用新的方法解简易方程,使学生初步领略数学中的方法美。二、学法引导1.教学方法:引导发现法。注意教学中民主意识和学生的主体作用的体现。2.学生学法:识记→练习反馈三、重点、难点、疑点及解决办法1.重点:代数解法解简易方程。2.难点:解方程时准确把握两边都加上(或减去)、乘以(或除以)同一适当的数。3.疑点:代数解法解简易方程的依据。四、课时安排1课时五、教具学具准备投影仪或电脑、自制胶片。六、师生互动活动设计教师创设情境,学生解决问题。教师介绍新的方法,学生反复练习。七、教学步骤(一)创设情境,复习导入(出示投影1)引例:班上有37名同学,分成人数相等的两队进行拔河比赛,恰好余3人当裁判员,每个队有多少人?师:该问题如何解决呢?请同学们考虑好后写在练习本上.学生活动:解答问题,一个学生板演.师生共同订正,对照板演学生的做法,师问:有无参考资料,少熬夜!不同解法?学生活动:回答问题,一个学生板演,其他学生比较两种解法.问;这两种解法有什么不同呢?学生活动:积极思索,回答问题.(一是列算式的解法,二是列方程的解法).师:很好.为了叙述问题方便,我们分别把这两种解法叫做算术解法和代数解法.小学学过的应用题可用算术方法也可用代数方法解.有时算术方法简便,有时代数方法简便,但是随着学习的逐步展开,遇到的问题越来越复杂,使用代数解法的优越性将会体现的越来越充分,因此,在初中代数课上,将把方程的知识作为一个重要的内容来学习.当然,在开始学习方程时,还是要从简单的方程入手,即简易方程.引出课题.[板书]1.5简易方程(二)探索新知,讲授新课师:谈到方程,同学们并不陌生,你能说明什么叫方程吗?学生活动:踊跃举手,回答问题。[板书]含有未知数的等式叫方程接问:你还知道关于方程的其他概念吗?学生活动:积极思考并回答。[板书]方程的解;解方程追问:能再具体些吗?即什么叫方程的解?什么叫解方程?并举例说明.学生活动:互相讨论后回答.(使方程左右两边相等的未知数的值叫做方程的解;求方程的解的过程叫解方程,师:好!这是小学学的解方程的方法。在初中代数课上,我们要从另一角度来解,还以上边这个方程为例。[板书]学生活动:相互讨论达成共识(合理。因把x=5代入方程3x+9=24,左边=右边,所以x=5是方程的解)【教法说明】先复习小学有关方程的几个概念和解法,再提代数解法,形成对比,使学生认识到同一问题可从不同角度去考虑,即培养了发散思维。正是因为认识问题的不同侧面,导致学生感到疑惑,这时让学生自己去检验新方法的合理性,不但可消除疑虑,而且还有助于发展学生的创造能力。师:以前的方法只能解很简单的方程,而后者则可以解较复杂的方程,因此更为重要。为了更好的理解和熟悉这种解法,我们共同做例1。(三)尝试反馈,巩固练习例1解方程(x/2)-5=11问:你认为第一步方程两边应加上(或减去)什么参考资料,少熬夜!数最合适?为什么?学生活动:思考并回答.(师板书)问:你认为第二步方程两边应乘以(或除以)什么数最合适?为什么?学生活动:思考并回答(师板书)解:方程两边都加上5,得(x/2)-5+5=11+5x/2=16(x/2)*2=16*2x=32问:这个结果正确吗?请同学们自己检验.学生活动:练习本上检验并回答问题.(正确)师:这种新方法解方程时,第一步目的是什么?第二步目的是什么?从而确定出该加上(或减去)怎样的数,该乘以(或除以)怎样的数更合适.学生活动:回答这两个问题.初一数学教案【第四篇】多边形及其内角和知识点一:多边形的概念⑴多边形定义:在平面内,由一些线段首位顺次相接组成的图形叫做________.如果一个多边形由n条线段组成,那么这个多边形叫做____________.(一个多边形由几条线段组成,就叫做几边形.)多边形的表示:用表示它的各顶点的大写字母来表示,表示多边形必须按顺序书写,可按顺时针或逆时针的顺序.如五边形ABCDE.⑵多边形的边、顶点、内角和外角.多边形相邻两边组成的角叫做______________,多边形的边与它的邻边的延长线组成的角叫做________________.⑶多边形的对角线连接多边形的不相邻的两个顶点的线段,叫做___________________.画一个五边形ABCDE,并画出所有的对角线.知识点二:凸多边形与凹多边形在图(1)中,画出四边形ABCD的任何一条边所在的直线,整个图形都在这条直线的______,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;而图(2)就不满足上述凸多边形的特征,因为我们画CD所在直线,整个多边形不都在这条直线的同一侧,我们称它为凹多边形,今后我们在习题、练习中提到的多边形都是______多边形.知识点二:正多边形各个角都相等,各条边都相等的多边形叫做参考资料,少熬夜!_____________.探究多边形的对角线条数知识点三:多边形的内角和公式推导1、我们知道三角形的内角和为__________.2、我们还知道,正方形的四个角都等于____°,那么它的内角和为_____°,同样长方形的内角和也是______°.3、正方形和长方形都是特殊的四边形,其内角和为360度,那么一般的四边形的内角和为多少呢?4、画一个任意的四边形,用量角器量出它的四个内角,计算它们的和,与同伴交流你的结果.从中你得到什么结论?探究1:任意画一个四边形,量出它的4个内角,计算它们的和.再画几个四边形,?量一量、算一算.你能得出什么结论?能否利用三角形内角和等于180?°得出这个结论?结论:。探究2:从上面的问题,你能想出五边形和六边形的内角和各是多少吗?观察图3,?请填空:(1)从五边形的一个顶点出发,可以引_____条对角线,它们将五边形分为_____个三角形,五边形的内角和等于180°×______.(2)从六边形的一个顶点出发,可以引_____条对角线,它们将六边形分为_____个三角形,六边形的内角和等于180°×______.探究3:一般地,怎样求n边形的内角和呢?请填空:从n边形的一个顶点出发,可以引____条对角线,它们将n边形分为____个三角形,n边形的内角和等于180°×______.综上所述,你能得到多边形内角和公式吗?设多边形的边数为n,则n边形的内角和等于______________.想一想:要得到多边形的内角和必需通过“___________定理”来完成,就是把一个多边形分成几个三角形.除利用对角线把多边形分成几个三角形外,还有其他的分法吗?你会用新的分法得到n边形的内角和公式吗?知识点四:多边形的外角和探究4:如图8,在六边形的每个顶点处各取一个外角,?这些外角的和叫做六边形的外角和.六边形的外角和等于多少?问题:如果将六边形换为n边形(n是大于等于3的整数),结果还相同吗?多边形的外角和定理:.理解与运用参考资料,少熬夜!例1如果一个四边形的一组对角互补,那么另一组对角有什么关系?已知:四边形ABCD
本文标题:初一数学教案8篇
链接地址:https://www.777doc.com/doc-9109669 .html