您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 高中数学最全的二级结论:解析几何(收藏)
高中数学最全的二级结论:解析几何(收藏)77.斜率公式2121yykxx(111(,)Pxy、222(,)Pxy).78.直线的五种方程(1)点斜式11()yykxx(直线l过点111(,)Pxy,且斜率为k).(2)斜截式ykxb(b为直线l在y轴上的截距).(3)两点式112121yyxxyyxx(12yy)(111(,)Pxy、222(,)Pxy(12xx)).(4)截距式1xyab(ab、分别为直线的横、纵截距,0ab、)(5)一般式0AxByC(其中A、B不同时为0).79.两条直线的平行和垂直(1)若111:lykxb,222:lykxb①121212||,llkkbb;②12121llkk.(2)若1111:0lAxByC,2222:0lAxByC,且A1、A2、B1、B2都不为零,①11112222||ABCllABC;②1212120llAABB;80.夹角公式(1)2121tan||1kkkk.(111:lykxb,222:lykxb,121kk)(2)12211212tan||ABABAABB.(1111:0lAxByC,2222:0lAxByC,12120AABB).直线12ll时,直线l1与l2的夹角是2.81.1l到2l的角公式(1)2121tan1kkkk.(111:lykxb,222:lykxb,121kk)(2)12211212tanABABAABB.(1111:0lAxByC,2222:0lAxByC,12120AABB).直线12ll时,直线l1到l2的角是2.82.四种常用直线系方程(1)定点直线系方程:经过定点000(,)Pxy的直线系方程为00()yykxx(除直线0xx),其中k是待定的系数;经过定点000(,)Pxy的直线系方程为00()()0AxxByy,其中,AB是待定的系数.(2)共点直线系方程:经过两直线1111:0lAxByC,2222:0lAxByC的交点的直线系方程为111222()()0AxByCAxByC(除2l),其中λ是待定的系数.(3)平行直线系方程:直线ykxb中当斜率k一定而b变动时,表示平行直线系方程.与直线0AxByC平行的直线系方程是0AxBy(0),λ是参变量.(4)垂直直线系方程:与直线0AxByC(A≠0,B≠0)垂直的直线系方程是0BxAy,λ是参变量.83.点到直线的距离0022||AxByCdAB(点00(,)Pxy,直线l:0AxByC).84.0AxByC或0所表示的平面区域设直线:0lAxByC,则0AxByC或0所表示的平面区域是:若0B,当B与AxByC同号时,表示直线l的上方的区域;当B与AxByC异号时,表示直线l的下方的区域.简言之,同号在上,异号在下.若0B,当A与AxByC同号时,表示直线l的右方的区域;当A与AxByC异号时,表示直线l的左方的区域.简言之,同号在右,异号在左.85.111222()()0AxByCAxByC或0所表示的平面区域设曲线111222:()()0CAxByCAxByC(12120AABB),则111222()()0AxByCAxByC或0所表示的平面区域是:111222()()0AxByCAxByC所表示的平面区域上下两部分;111222()()0AxByCAxByC所表示的平面区域上下两部分.86.圆的四种方程(1)圆的标准方程222()()xaybr.(2)圆的一般方程220xyDxEyF(224DEF>0).(3)圆的参数方程cossinxarybr.(4)圆的直径式方程1212()()()()0xxxxyyyy(圆的直径的端点是11(,)Axy、22(,)Bxy).87.圆系方程(1)过点11(,)Axy,22(,)Bxy的圆系方程是1212112112()()()()[()()()()]0xxxxyyyyxxyyyyxx1212()()()()()0xxxxyyyyaxbyc,其中0axbyc是直线AB的方程,λ是待定的系数.(2)过直线l:0AxByC与圆C:220xyDxEyF的交点的圆系方程是22()0xyDxEyFAxByC,λ是待定的系数.(3)过圆1C:221110xyDxEyF与圆2C:222220xyDxEyF的交点的圆系方程是2222111222()0xyDxEyFxyDxEyF,λ是待定的系数.88.点与圆的位置关系点00(,)Pxy与圆222)()(rbyax的位置关系有三种若2200()()daxby,则dr点P在圆外;dr点P在圆上;dr点P在圆内.89.直线与圆的位置关系直线0CByAx与圆222)()(rbyax的位置关系有三种:0相离rd;0相切rd;0相交rd.其中22BACBbAad.90.两圆位置关系的判定方法设两圆圆心分别为O1,O2,半径分别为r1,r2,dOO21条公切线外离421rrd;条公切线外切321rrd;条公切线相交22121rrdrr;条公切线内切121rrd;无公切线内含210rrd.91.圆的切线方程(1)已知圆220xyDxEyF.①若已知切点00(,)xy在圆上,则切线只有一条,其方程是0000()()022DxxEyyxxyyF.当00(,)xy圆外时,0000()()022DxxEyyxxyyF表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()yykxx,再利用相切条件求k,这时必有两条切线,注意不要漏掉平行于y轴的切线.③斜率为k的切线方程可设为ykxb,再利用相切条件求b,必有两条切线.(2)已知圆222xyr.①过圆上的000(,)Pxy点的切线方程为200xxyyr;②斜率为k的圆的切线方程为21ykxrk.92.椭圆22221(0)xyabab的参数方程是cossinxayb.93.椭圆22221(0)xyabab焦半径公式)(21caxePF,)(22xcaePF.94.椭圆的的内外部(1)点00(,)Pxy在椭圆22221(0)xyabab的内部2200221xyab.(2)点00(,)Pxy在椭圆22221(0)xyabab的外部2200221xyab.95.椭圆的切线方程(1)椭圆22221(0)xyabab上一点00(,)Pxy处的切线方程是00221xxyyab.(2)过椭圆22221(0)xyabab外一点00(,)Pxy所引两条切线的切点弦方程是00221xxyyab.(3)椭圆22221(0)xyabab与直线0AxByC相切的条件是22222AaBbc.96.双曲线22221(0,0)xyabab的焦半径公式21|()|aPFexc,22|()|aPFexc.97.双曲线的内外部(1)点00(,)Pxy在双曲线22221(0,0)xyabab的内部2200221xyab.(2)点00(,)Pxy在双曲线22221(0,0)xyabab的外部2200221xyab.98.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222byax渐近线方程:22220xyabxaby.(2)若渐近线方程为xaby0byax双曲线可设为2222byax.(3)若双曲线与12222byax有公共渐近线,可设为2222byax(0,焦点在x轴上,0,焦点在y轴上).99.双曲线的切线方程(1)双曲线22221(0,0)xyabab上一点00(,)Pxy处的切线方程是00221xxyyab.(2)过双曲线22221(0,0)xyabab外一点00(,)Pxy所引两条切线的切点弦方程是00221xxyyab.(3)双曲线22221(0,0)xyabab与直线0AxByC相切的条件是22222AaBbc.100.抛物线pxy22的焦半径公式抛物线22(0)ypxp焦半径02pCFx.过焦点弦长pxxpxpxCD212122.[来源:学,科,网Z,X,X,K]101.抛物线pxy22上的动点可设为P),2(2ypy或或)2,2(2ptptPP(,)xy,其中22ypx.102.二次函数2224()24bacbyaxbxcaxaa(0)a的图象是抛物线:(1)顶点坐标为24(,)24bacbaa;(2)焦点的坐标为241(,)24bacbaa;(3)准线方程是2414acbya.103.抛物线的内外部(1)点00(,)Pxy在抛物线22(0)ypxp的内部22(0)ypxp.点00(,)Pxy在抛物线22(0)ypxp的外部22(0)ypxp.(2)点00(,)Pxy在抛物线22(0)ypxp的内部22(0)ypxp.点00(,)Pxy在抛物线22(0)ypxp的外部22(0)ypxp.(3)点00(,)Pxy在抛物线22(0)xpyp的内部22(0)xpyp.点00(,)Pxy在抛物线22(0)xpyp的外部22(0)xpyp.(4)点00(,)Pxy在抛物线22(0)xpyp的内部22(0)xpyp.点00(,)Pxy在抛物线22(0)xpyp的外部22(0)xpyp.104.抛物线的切线方程(1)抛物线pxy22上一点00(,)Pxy处的切线方程是00()yypxx.(2)过抛物线pxy22外一点00(,)Pxy所引两条切线的切点弦方程是00()yypxx.(3)抛物线22(0)ypxp与直线0AxByC相切的条件是22pBAC.105.两个常见的曲线系方程(1)过曲线1(,)0fxy,2(,)0fxy的交点的曲线系方程是12(,)(,)0fxyfxy(为参数).(2)共焦点的有心圆锥曲线系方程22221xyakbk,其中22max{,}kab.当22min{,}kab时,表示椭圆;当2222min{,}max{,}abkab时,表示双曲线.106.直线与圆锥曲线相交的弦长公式221212()()ABxxyy或2222211212(1)()||1tan||1tABkxxxxyyco(弦端点A),(),,(2211yxByx,由方程0)y,x(Fbkxy消去y得到02cbxax,0,为直线AB的倾斜角,k为直线的斜率).107.圆锥曲线的两类对称问题(1)曲线(,)0Fxy关于点00(,)Pxy成中心对称的曲线是00(2-,2)0Fxxyy.(2)曲线(,)0Fxy关于直线0AxByC成轴对称的曲线是22222()2()(,)0AAxByCBAxByCFxyABAB.[来源:学科网ZXXK]108.“四线”一方程对于一般的二次曲线220AxBxyCyDxEyF,用0xx代2x,用0yy代2y,用
本文标题:高中数学最全的二级结论:解析几何(收藏)
链接地址:https://www.777doc.com/doc-8139446 .html