您好,欢迎访问三七文档
§6.2等差数列及其前n项和第六章数列KAOQINGKAOXIANGFENXI考情考向分析以考查等差数列的通项、前n项和及性质为主,等差数列的证明也是考查的热点.本节内容在高考中既可以以填空题的形式进行考查,也可以以解答题的形式进行考查.解答题往往与等比数列、数列求和、不等式等问题综合考查.NEIRONGSUOYIN内容索引基础知识自主学习题型分类深度剖析课时作业1基础知识自主学习PARTONE知识梳理1.等差数列的定义一般地,如果一个数列_______________________________________________________,那么这个数列就叫做等差数列,这个常数叫做等差数列的_____,通常用字母___表示.2.等差数列的通项公式如果等差数列{an}的首项为a1,公差为d,那么它的通项公式是______________.3.等差中项由三个数a,A,b组成的等差数列可以看成最简单的等差数列.这时,A叫做a与b的_________.ZHISHISHULI从第二项起,每一项减去它的前一项所得的差等于同一个常数公差dan=a1+(n-1)d等差中项4.等差数列的常用性质(1)通项公式的推广:an=am+________(n,m∈N*).(2)若{an}为等差数列,且k+l=m+j(k,l,m,j∈N*),则_____________.(3)若{an}是等差数列,公差为d,则{a2n}也是等差数列,公差为____.(4)若{an},{bn}是等差数列,则{pan+qbn}也是等差数列.(5)若{an}是等差数列,公差为d,则ak,ak+m,ak+2m,…(k,m∈N*)是公差为____的等差数列.(6)数列Sm,S2m-Sm,S3m-S2m,…构成等差数列.(n-m)dak+al=am+aj2dmd5.等差数列的前n项和公式设等差数列{an}的公差为d,其前n项和Sn=_________或Sn=_____________.nn-12na1+dna1+an2Sn=d2n2+a1-d2n.6.等差数列的前n项和公式与函数的关系数列{an}是等差数列⇔Sn=An2+Bn(A,B为常数).7.等差数列的前n项和的最值在等差数列{an}中,a10,d0,则Sn存在最___值;若a10,d0,则Sn存在最___值.大小【概念方法微思考】1.“a,A,b是等差数列”是“A=”的什么条件?提示充要条件.2.等差数列的前n项和Sn是项数n的二次函数吗?提示不一定.当公差d=0时,Sn=na1,不是关于n的二次函数.3.如何推导等差数列的前n项和公式?提示利用倒序相加法.a+b2基础自测JICHUZICE题组一思考辨析1234561.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.()(2)等差数列{an}的单调性是由公差d决定的.()(3)等差数列的前n项和公式是常数项为0的二次函数.()(4)已知等差数列{an}的通项公式an=3-2n,则它的公差为-2.()(5)数列{an}为等差数列的充要条件是对任意n∈N*,都有2an+1=an+an+2.()(6)已知数列{an}的通项公式是an=pn+q(其中p,q为常数),则数列{an}一定是等差数列.()×√×√√√题组二教材改编123456解析由已知可得a1+5d=2,5a1+10d=30,2.[P47习题T5]设数列{an}是等差数列,其前n项和为Sn,若a6=2且S5=30,则S8=___.解得a1=263,d=-43,∴S8=8a1+8×72d=32.321234563.[P40习题T5]在等差数列{an}中,若a3+a4+a5+a6+a7=450,则a2+a8=____.解析由等差数列的性质,得a3+a4+a5+a6+a7=5a5=450,∴a5=90,∴a2+a8=2a5=180.1804.一个等差数列的首项为,从第10项起开始比1大,则这个等差数列的公差d的取值范围是________.125题组三易错自纠123456解析由题意可得a101,a9≤1,即125+9d1,125+8d≤1,所以875d≤325.875,3251234565.若等差数列{an}满足a7+a8+a90,a7+a100,则当n=___时,{an}的前n项和最大.解析因为数列{an}是等差数列,且a7+a8+a9=3a80,所以a80.又a7+a10=a8+a90,所以a90.故当n=8时,其前n项和最大.86.一物体从1960m的高空降落,如果第1秒降落4.90m,以后每秒比前一秒多降落9.80m,那么经过___秒落到地面.解析设物体经过t秒降落到地面.物体在降落过程中,每一秒降落的距离构成首项为4.90,公差为9.80的等差数列.所以4.90t+12t(t-1)×9.80=1960,12345620即4.90t2=1960,解得t=20.2题型分类深度剖析PARTTWO题型一等差数列基本量的运算自主演练得33a1+3×3-12×d=2a1+2×2-12×d+4a1+4×4-12×d,1.(2018·全国Ⅰ改编)记Sn为等差数列{an}的前n项和,若3S3=S2+S4,a1=2,则a5=____.-10解析设等差数列{an}的公差为d,由3S3=S2+S4,将a1=2代入上式,解得d=-3,故a5=a1+(5-1)d=2+4×(-3)=-10.2.若{an}为等差数列,且a7-2a4=-1,a3=0,则公差d=____.-12解析由于a7-2a4=a1+6d-2(a1+3d)=-a1=-1,则a1=1.又由a3=a1+2d=1+2d=0,解得d=-12.3.已知等差数列{an},a2=2,a3+a5+a7=15,则数列{an}的公差d=___.解析∵a3+a5+a7=3a5=15,∴a5=5,∴a5-a2=3=3d,可得d=1.1思维升华(1)等差数列的通项公式及前n项和公式共涉及五个量a1,n,d,an,Sn,知道其中三个就能求出另外两个.(2)确定等差数列的关键是求出两个最基本的量,即首项a1和公差d.题型二等差数列的判定与证明师生共研(1)求证:数列1an-1是等差数列,并求an的通项公式;例1在数列{an}中,a1=2,an是1与anan+1的等差中项.(2)求数列1n2an的前n项和Sn.解由(1)得1n2an=1nn+1=1n-1n+1,∴Sn=1-12+12-13+13-14+…+1n-1n+1=1-1n+1=nn+1.思维升华等差数列的四个判定方法(1)定义法:证明对任意正整数n都有an+1-an等于同一个常数.(2)等差中项法:证明对任意正整数n都有2an+1=an+an+2.(3)通项公式法:得出an=pn+q后,再根据定义判定数列{an}为等差数列.(4)前n项和公式法:得出Sn=An2+Bn后,再使用定义法证明数列{an}为等差数列.跟踪训练1数列{an}满足an+1=an2an+1,a1=1.(1)证明:数列1an是等差数列;证明∵an+1=an2an+1,∴1an+1=2an+1an,化简得1an+1=2+1an,即1an+1-1an=2,又1a1=1,故数列1an是以1为首项,2为公差的等差数列.(2)求数列1an的前n项和Sn,并证明:1S1+1S2+…+1Snnn+1.解由(1)知1an=2n-1,所以Sn=n1+2n-12=n2.1S1+1S2+…+1Sn=112+122+…+1n211×2+12×3+…+1nn+1=1-12+12-13+…+1n-1n+1=1-1n+1=nn+1,n∈N*.题型三等差数列性质的应用多维探究所以S7=72(a1+a7)=49.命题点1等差数列项的性质例2(2018·江苏省南京秦淮中学模拟)设Sn是等差数列{an}的前n项和,已知a2=3,a6=11,则S7=____.解析因为a1+a7=a2+a6=3+11=14,49命题点2等差数列前n项和的性质例3(1)已知等差数列{an}的前n项和为Sn.若S5=7,S10=21,则S15=____.解析在等差数列{an}中,S5,S10-S5,S15-S10成等差数列,即7,14,S15-21成等差数列,所以7+(S15-21)=2×14,解得S15=42.42(2)已知Sn是等差数列{an}的前n项和,若a1=-2018,S20192019-S20132013=6,则S2020=______.∴S2020=1×2020=2020.解析由等差数列的性质可得Snn也为等差数列.设其公差为d,则S20192019-S20132013=6d=6,∴d=1.故S20202020=S11+2019d=-2018+2019=1,2020思维升华等差数列的性质(1)项的性质:在等差数列{an}中,m+j=p+q(m,j,p,q∈N*),则am+aj=ap+aq.(2)前n项和的性质:在等差数列{an}中,Sn为其前n项和,则①S2n=n(a1+a2n)=…=n(an+an+1);②S2n-1=(2n-1)an.所以S7=7×a1+a72=7×2a42=7a4=7.跟踪训练2(1)已知等差数列{an}的前n项和为Sn,若6a3+2a4-3a2=5,则S7=___.解析由6a3+2a4-3a2=5,得6(a1+2d)+2(a1+3d)-3(a1+d)=5a1+15d=5(a1+3d)=5,即5a4=5,所以a4=1,7(2)设等差数列{an}的前n项和为Sn,若S130,S140,则Sn取最大值时n的值为___.解析根据S130,S140,可以确定a1+a13=2a70,a1+a14=a7+a80,所以可以得到a70,a80,所以Sn取最大值时n的值为7.73课时作业PARTTHREE即S10=10a1+a102=5(a3+a8)=65.1.(2018·常州期末)设Sn为等差数列{an}的前n项和,若a3=4,S9-S6=27,则S10=___.解析因为S9-S6=a7+a8+a9=3a8=27,所以a8=9,基础保分练123456789101112131415166512345678910111213141516S2017=a1+a20172×2017=2a10092×2017=2017a1009=2017,2.已知等差数列{an}中,a1012=3,S2017=2017,则S2020=_____.解析由等差数列前n项和公式结合等差数列的性质可得4040则a1009=1,据此可得S2020=a1+a20202×2020=1010a1009+a1012=1010×4=4040.123456789101112131415163.在等差数列{an}中,Sn是其前n项和,a1=-9,S99-S77=2,则S10=___.0解析设公差为d,则Snn=a1+n-12d,∵S99-S77=2,∴9-12d-7-12d=2,∴d=2,∵a1=-9,∴S10=10×(-9)+10×92×2=0.123456789101112131415164.程大位《算法统宗》里有诗云“九百九十六斤棉,赠分八子做盘缠.次第每人多十七,要将第八数来言.务要分明依次弟,孝和休惹外人传.”意为:996斤棉花,分别赠送给8个子女做旅费,从第一个开始,以后每人依次多17斤,直到第八个孩子为止.分配时一定要长幼分明,使孝悌的美德外传,则第八个孩子分得棉____斤.184由等差数列前n项和公式可得8a1+8×72×17=99
三七文档所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
本文标题:(江苏专用)2020版高考数学大一轮复习 第六章 数列 6.2 等差数列及其前n项和课件
链接地址:https://www.777doc.com/doc-8137188 .html