您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 2020年中考数学一轮复习 基础考点及题型 专题01 有理数(含解析)
专题01有理数【思维导图】【知识要点】知识点一有理数基础概念有理数(概念理解)正数:大于0的数叫做正数。负数:正数前面加上符号“-”的数叫负数。有理数的分类(两种)(见思维导图)数轴规定了原点、正方向、单位长度的直线叫做数轴。数轴的三要素:原点、正方向、单位长度(重点)任何有理数都可以用数轴上的点表示,有理数与数轴上的点是一一对应的。数轴上的点表示的数从左到右依次增大;原点左边的数是负数,原点右边的数是正数.【注意】1.数轴是一条直线,可向两段无限延伸。2.在数轴上原点,正方向,单位长度的选取需根据实际情况而定。相反数只有符号不同的两个数叫做互为相反数.(绝对值相等,符号不同的两个数叫做互为相反数)绝对值绝对值的概念:一班数轴上表示a的数与原点之间的距离叫做数a的绝对值。绝对值的意义:正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。(互为相反数的两个数的绝对值相等。)比较大小1)数轴上两个点表示的数,右边的总比左边的大。2)正数大于0,负数小于0,正数大于负数。3)两个负数比较,绝对值大的反而小。4)两个正数比较,绝对值大的反而大。常用方法:数轴比较法、差值比较法、商值比较法、绝对值比较法等。1.(2018·海南琼山中学中考模拟)下列各组数中,互为相反数的是()A.|+2|与|-2|B.-|+2|与+(-2)C.-(-2)与+(+2)D.|-(-3)|与-|-3|【详解】解:A、|+2|=2,|-2|=2,故这两个数相等,故此选项错误;B、-|+2|=-2,+(-2)=-2,故这两个数相等,故此选项错误;C、-(-2)=2与+(+2)=2,这两个数相等,故此选项错误;D、|-(-3)|=3,-|-3|=-3,3+(-3)=0,这两个数互为相反数,故此选项正确.故选:D.2.(2019·四川中考真题)a一定是A.正数B.负数C.0D.以上选项都不正确【详解】∵a可正、可负、也可能是0∴选D.3.(2018·内蒙古中考模拟)如图,在数轴上表示互为相反数的两数的点是()A.点A和点CB.点B和点CC.点A和点BD.点B和点D【详解】A、B、C、D所表示的数分别是2,1,-2,-3,因为2和-2互为相反数,故选A.4.(2013·江苏中考真题)如图,数轴上的点A、B分别对应实数a、b,下列结论中正确的是()A.a>bB.|a|>|b|C.﹣a<bD.a+b<0【详解】根据数轴,a<0,b>0,且|a|<|b|,A、应为a<b,故本选项错误;B、应为|a|<|b|,故本选项错误;C、∵a<0,b>0,且|a|<|b|,∴a+b>0,∴﹣a<b正确,故本选项正确;D、应该是a+b>0,故本选项错误.故选C.5.(2019·甘肃中考真题)已知1a,b是2的相反数,则ab的值为()A.-3B.-1C.-1或-3D.1或-3【详解】∵1a,b是2的相反数,∴1a或1a﹣,2b﹣,当1a时,121ab﹣﹣;当1a﹣时,123ab﹣﹣﹣;综上,ab的值为-1或-3,故选:C.考察题型一绝对值非负性应用1.(2016·山东中考真题)当1a2时,代数式|a-2|+|1-a|的值是()A.-1B.1C.3D.-3【详解】解:当1<a<2时,|a﹣2|+|1﹣a|=2﹣a+a﹣1=1.故选B.2.(2019·山东中考模拟)表示实数a,b的点在数轴上的位置如图所示,化简2aba的结果是()A.2a-bB.bC.-bD.-2a+b【详解】根据数轴可以判断出0ab,则abab,2aa,所以2abaabab所以选C.3.(2017·广西中考模拟)若|x|=7|y|=5x+y0,,且,那么x-y的值是()A.2或12B.2或-12C.-2或12D.-2或-12【详解】由x7可得x=±7,由y5可得y=±5,由x+y0可知:当x=7时,y=5;当x=7时,y=-5,则xy75122或,故选:A4.(2018·浙江中考模拟)如果|a|≥0,那么()A.a>0B.a<0C.a≠0D.a为任意数【详解】解:∵0a,∴a为任意数,故选:D.5.(2017·湖北中考模拟)若|x﹣2|+|y+2|=0,求x﹣y的相反数.【详解】∵|x﹣2|+|y+2|=0,∴x﹣2=0,y+2=0,解得x=2,y=﹣2,∴x﹣y=2﹣(﹣2)=4,∴x﹣y的相反数是﹣4.6.(2017·广东中考模拟)已知|a+3|+|b﹣5|=0,求:(1)a+b的值;(2)|a|+|b|的值.【详解】(1)由题意得,a+3=0,b﹣5=0,解得a=﹣3,b=5,所以,a+b=﹣3+5=2;(2)|a|+|b|=|﹣3|+|5|=3+5=8.考查题型二有理数比较大小1.(2018·山东中考模拟)如果a+b+c=0,且|a|>|b|>|c|.则下列说法中可能成立的是()A.b为正数,c为负数B.c为正数,b为负数C.c为正数,a为负数D.c为负数,a为负数【解析】由题目答案可知a,b,c三数中只有两正一负或两负一正两种情况,如果假设两负一正情况合理,要使a+b+c=0成立,则必是b<0、c<0、a>0,否则a+b+c≠0,但题中并无此答案,则假设不成立,D被否定,于是应在两正一负的答案中寻找正确答案,若a,b为正数,c为负数时,则:|a|+|b|>|c|,∴a+b+c≠0,∴A被否定,若a,c为正数,b为负数时,则:|a|+|c|>|b|,∴a+b+c≠0,∴B被否定,只有C符合题意.故选:C.2.(2019·北京中考模拟)实数a,b,c在数轴上的对应点的位置如图所示,如果a+b=0,那么下列结论正确的是()A.|a|>|c|B.a+c<0C.abc<0D.0ab【详解】∵a+b=0,∴原点在a,b的中间,如图,由图可得:|a|<|c|,a+c>0,abc<0,ab=-1,故选C.12.(2019·山东滨州市滨城区东城中学中考模拟)有理数a,b在数轴上的对应点如图所示,则下面式子中正确的是()①b<0<a;②|b|<|a|;③ab>0;④a﹣b>a+b.A.①②B.①④C.②③D.③④【解析】由图知,b0a,故①正确,因为b点到原点的距离远,所以|b||a|,故②错误,因为b0a,所以ab0,故③错误,由①知a-ba+b,所以④正确.故选:B.4.(2018·湖北中考真题)在0,﹣1,0.5,(﹣1)2四个数中,最小的数是()A.0B.﹣1C.0.5D.(﹣1)2【详解】根据有理数比较大小的方法,可得﹣1<0<0.5<(﹣1)2,∴在0,﹣1,0.5,(﹣1)2四个数中,最小的数是﹣1.故选B.5.(2018·山东中考真题)实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b|B.|ac|=acC.b<dD.c+d>0【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则a+d>0,故选项正确.故选:B.知识点二有理数四则运算有理数的加法(重点)有理数的加法法则:(先确定符号,再算绝对值)1.同号两数相加,取相同的符号,并把绝对值相加;2.异号两数相加,绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;3.互为相反数的两个数相加得0;(如果两个数的和为0,那么这两个数互为相反数)4.一个数同0相加,仍得这个数。有理数的加法运算律:加法交换律:两个数相加,交换加数的位置,和不变。即abba;加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。即abcabc。有理数的减法有理数的减法法则:减去一个数等于加上这个数的相反数。即abab。注:两个变化:减号变成加号;减数变成它的相反数。有理数的加减混合运算规则:运用减法法则将加减混合运算统一为加法进行运算步骤:(1)减法化加法;(2)省略括号和加号;(3)运用加法运算律使计算简便;(4)运用有理数加法法则进行计算。注:运用加法运算律时,可按如下几点进行:(1)同号的先结合;(2)同分母的分数或者比较容易通分的分数相结合;(3)互为相反数的两数相结合;(4)能凑成整数的两数相结合;(5)带分数一般化为假分数或者分为整数和分数两部分,再分别相加。有理数的乘法(重点)有理数的乘法法则:(1)两数相乘,同号得正,异号得负,并把绝对值相乘。(2)任何数同0相乘,都得0.倒数:乘积是1的两个有理数互为倒数。0没有倒数。(数0aa的倒数是1a)多个有理数相乘的法则及规律:(1)几个不是0的数相乘,负因数的个数是奇数时,积是负数;负因数的个数是偶数时,积是正数。确定符号后,把各个因数的绝对值相乘。(2)几个数相乘,有一个因数为0,积为0;反之,如果积为0,那么至少有一个因数是0.注:带分数与分数相乘时,通常把带分数化成假分数,再与分数相乘。有理数的乘法运算律乘法交换律:两个数相乘,交换因数的位置,积相等。即abba。乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。即abcabc。乘法分配律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。即abcabac。有理数的除法有理数除法法则:(1)除以一个不为0的数,等于乘以这个数的倒数。即10ababb。(2)两数相除(被除数不为0),同号得正,异号得负,并把绝对值相除。0除以任何不为0的数,都得0。步骤:先确定商的符号,再算出商的绝对值。有理数的乘除混合运算运算顺序:从左往右进行,将除法化成乘法后,进行约分计算。(注:带分数应首先化为假分数进行运算)有理数的四则混合运算运算顺序:先乘除,后加减,有括号要先算括号里面的。注:除法一般先化为乘法,带分数化为假分数,合理使用运算律1.(2018·江苏中考模拟)计算:|–5+3|的结果是()A.–8B.8C.–2D.2【解析】原式=|-2|=2,故选:D.2.(2019·浙江中考真题)某地一周前四天每天的最高气温与最低气温如右表,则这四天中温差最大的是()星期一二三四最高气温10℃12℃11℃9℃最低气温3℃0℃-2℃-3℃A.星期一B.星期二C.星期三D.星期四【详解】星期一温差:10﹣3=7℃;星期二温差:12﹣0=12℃;星期三温差:11﹣(﹣2)=13℃;星期四温差:9﹣(﹣3)=12℃;综上,周三的温差最大.故选C.3.(2018·四川中考模拟)如果a,b是有理数,那么下列各式中成立的是()A.如果a0,b0,那么a+b0B.如果a0,b0,那么a+b0C.如果a0,b0,那么a+b0D.如果a0,b0,且|a||b|,那么a+b0【解析】解:A、∵同号两数相加取与加数相同的符号,∴a+b0,故选项错误;B、如a=1,b=-2时,a+b=-10,故选项错误;C、如a=3,b=-2时,a+b=10,故选项错误;D、异号两数相加,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值,故选项正确.故选D.4.(2019·辽宁中考模拟)计算25()77的正确结果是()A.37B.-37C.1D.﹣1【详解】原式251.77故选:D.5.(2017·山东中考真题)计算-(-1)+|-1|,其结果为()A.-2B.2C.0D.-1【解析】试题分析:由题可得:原式=1+1=2,故选:B.6.(2018·辽宁中考模拟)两个非零有理数的和为零,则它们的商是()A.﹣1B.0C.1D.﹣1或1【详解】∵两个非零有理数的和为零,∴这两个数是一对相反数,∴它们符号不同,绝对值相等,∴它们的商是-1,故选A.7.(2019·内蒙古中考模拟)若−12的倒数与𝑚+4互为相反数,则𝑚的值是()A.1B.−1C.2D.−2【详解】−12的倒数与m+4互为相
本文标题:2020年中考数学一轮复习 基础考点及题型 专题01 有理数(含解析)
链接地址:https://www.777doc.com/doc-8060121 .html