您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 西安市XX中学2016-2017年八年级上第二次月考数学试卷含解析
2016-2017学年陕西省西安市XX中学八年级(上)第二次月考数学试卷一、选择题1.16的平方根是()A.±4B.±2C.4D.22.三角形的一个外角是锐角,则此三角形的形状是()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定3.下列命题中,是假命题的是()A.平方根等于本身的数是0B.如果a,b都是无理数,那么a+b也一定是无理数C.坐标平面内的点与有序实数对一一对应D.与6可以合并同类项4.已知等腰三角形的腰长为10,一腰上的高为6,则以底边为边长的正方形的面积为()A.40B.80C.40或360D.80或3605.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d.例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为()A.7,6,1,4B.6,4,1,7C.4,6,1,7D.1,6,4,76.下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)的图象的是()A.B.C.D.7.在三角形ABC中,D是边BC上的一点,已知AC=5,AD=6,BD=10,CD=5,那么三角形ABC的面积是()A.30B.36C.72D.1258.某校6名学生的某次竞赛成绩统计如图,则这组数据的众数、中位数、方差依次是()A.18,17.5,5B.18,17.5,3C.18,18,3D.18,18,19.有两段长度相等的河渠挖掘任务,分别交给甲乙两个工程队同时进行挖掘,如图是反映所挖河渠长度y(米)与挖掘时间x(时)之间的关系的部分图象.如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加7千米/时,结果两队同时完成了任务,则该河渠的长度为()A.90米B.100米C.110米D.120米10.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A.16B.17C.18D.19二、填空题11.已知﹣≤x≤1,则化简+|x﹣3|+的结果等于.12.已知等边△ABC的两个顶点的坐标为A(0,4),B(0,﹣2),则点C的坐标为.13.现有一组数据9,11,11,7,10,8,12是中位数是m,众数是n,则关于x,y的方程组的解是:.14.如图,在一个长为20米,宽为18米的矩形草地上,放着一根长方体的木块,已知该木块的较长边和场地宽AD平行,横截面是边长为2米的正方形,一只蚂蚁从点A处,爬过木块到达C处需要走的最短路程是米.15.如图所示,在直角坐标系中,矩形OABC的顶点B的坐标为(12,5),直线恰好将矩形OABC分成面积相等的两部分.那么b=.16.如图,在直角坐标系中,长方形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(2,6),将长方形沿对角线AC翻折,点B落在点D的位置,且AD交y轴于点E,则点D的坐标为.三、解答题(共7小题,满分72分)17.计算:(1)3+﹣+(2)(3)÷[﹣(3)](4).18.若a,b为实数,且b=,求﹣.19.用白铁皮做水桶,每张铁皮能做1个桶身或8个桶底,而1个桶身1个桶底正好配套做1个水桶,现在有63张这样的铁皮,则需要多少张做桶身,多少张做桶底正好配套?20.如图,四边形ABCD中,∠A=135°,∠B=∠D=90°,BC=2,AD=2,则四边形ABCD的面积是多少?21.如图,BE,CD相交于点A,∠DEA,∠BCA的平分线相交于F.(1)探求∠F与∠B,∠D有何等量关系?(2)当∠B:∠D:∠F=2:4:x时,求x的值.22.如图,在直角梯形AOBC中,AC平行于OB,且OB=6,AC=5,OA=4,(1)求出经过B、C两点的直线的解析式:(2)在边AC和BC(含端点)上分别找到点M和点N,使得△MON的面积最大,并说明理由.(3)在(2)成立的条件下,是否存在M和N,同时满足△MON的周长还是短?若存在,请求出周长的最小值,并求出此时点M、N的坐标:若不存在,请说明理由.23.如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块立放其中(圆柱形铁块的下底面完全落在乙槽底面上).现将甲槽中的水匀速注人乙槽,甲、乙两个水槽中水的深度y(厘米)与注水时间x(分钟)之间的关系如图2所示.根据图象提供的信息,解答下列问题:(1)图2中折线ABC表示槽中水的深度与注水时间之间的关系,线段DE表示槽中水的深度与注水时间之间的关系(以上两空选塡“甲”或“乙”),点B的纵坐标表示的实际意义是;(2)注水多长时间时,甲、乙两个水槽中水的深度相同;(3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积;(4)若乙槽中铁块的体积为112立方厘米,求甲槽底面积(壁厚不计).(直接写成结果)2016-2017学年陕西省西安市XX中学八年级(上)第二次月考数学试卷参考答案与试题解析一、选择题1.16的平方根是()A.±4B.±2C.4D.2【考点】平方根.【分析】根据平方根的概念即可求出答案,【解答】解:∵(±4)2=16,∴16的平方根是±4,故选(A)2.三角形的一个外角是锐角,则此三角形的形状是()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定【考点】三角形的外角性质.【分析】三角形的一个外角是锐角,根据邻补角的定义可得它相邻的内角为钝角,即可判断三角形的形状是钝角三角形.【解答】解:∵三角形的一个外角是锐角,∴与它相邻的内角为钝角,∴三角形的形状是钝角三角形.故选B.3.下列命题中,是假命题的是()A.平方根等于本身的数是0B.如果a,b都是无理数,那么a+b也一定是无理数C.坐标平面内的点与有序实数对一一对应D.与6可以合并同类项【考点】命题与定理.【分析】根据平方根的性质,无理数的定义,同类二次根式的合并,坐标平面内的点与有序实数对的关系进行判断即可.【解答】解:A、平方根等于本身的数是0,是真命题;B、如果a=,b=﹣都是无理数,那么a+b=0是有理数,是假命题;C、坐标平面内的点与有序实数对一一对应,是真命题;D、∵=2,6=,∴与6是同类二次根式可以合并,是真命题;故选B.4.已知等腰三角形的腰长为10,一腰上的高为6,则以底边为边长的正方形的面积为()A.40B.80C.40或360D.80或360【考点】勾股定理;等腰三角形的性质.【分析】根据题意作出图形分为高线在三角形内和高线在三角形外两种情况,然后根据勾股定理计算求解即可.【解答】解:由题意可作图左图中AC=10,CD=6,CD⊥AB根据勾股定理可知AD=8∴BD=2∴BC2=22+62=40右图中AC=10,CD=6,CD⊥BD,根据勾股定理知AD=8∴BD=18∴BC2=182+62=360.故选C.5.为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文a,b,c,d对应密文a+2b,2b+c,2c+3d,4d.例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为()A.7,6,1,4B.6,4,1,7C.4,6,1,7D.1,6,4,7【考点】二元一次方程组的应用.【分析】已知结果(密文),求明文,根据规则,列方程组求解.【解答】解:依题意,得,解得.∴明文为:6,4,1,7.故选B.6.下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)的图象的是()A.B.C.D.【考点】一次函数的图象;正比例函数的图象.【分析】根据“两数相乘,同号得正,异号得负”分两种情况讨论mn的符号,然后根据m、n同正时,同负时,一正一负或一负一正时,利用一次函数的性质进行判断.【解答】解:①当mn>0,m,n同号,同正时y=mx+n过1,3,2象限,同负时过2,4,3象限;②当mn<0时,m,n异号,则y=mx+n过1,3,4象限或2,4,1象限.故选A.7.在三角形ABC中,D是边BC上的一点,已知AC=5,AD=6,BD=10,CD=5,那么三角形ABC的面积是()A.30B.36C.72D.125【考点】勾股定理;三角形的面积.【分析】作CE⊥AD,AF⊥CD,则根据面积法可以证明AD×EC=AF×CD,要求AF,求CE即可,根据AC=CD=5,AD=6可以求得CE,△ABC的面积为×BC×AF.【解答】解:作CE⊥AD,AF⊥CD,在△ACD中S=•AD•CE=•CD•AF,∵AC=CD,∴AE=DE=3,故CE==4,∴AF==,∴△ABC的面积为×(10+5)×=36,故选B.8.某校6名学生的某次竞赛成绩统计如图,则这组数据的众数、中位数、方差依次是()A.18,17.5,5B.18,17.5,3C.18,18,3D.18,18,1【考点】方差;中位数;众数.【分析】根据众数、中位数的定义和方差公式分别进行解答即可.【解答】解:这组数据18出现的次数最多,出现了3次,则这组数据的众数是18;把这组数据从小到大排列,最中间两个数的平均数是(18+18)÷2=18,则中位数是18;这组数据的平均数是:(17×2+18×3+20)÷6=18,则方差是:[2×(17﹣18)2+3×(18﹣18)2+(20﹣18)2]=1;故选:D.9.有两段长度相等的河渠挖掘任务,分别交给甲乙两个工程队同时进行挖掘,如图是反映所挖河渠长度y(米)与挖掘时间x(时)之间的关系的部分图象.如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加7千米/时,结果两队同时完成了任务,则该河渠的长度为()A.90米B.100米C.110米D.120米【考点】函数的图象.【分析】横坐标为施工时间,纵坐标为施工长度,拆线的斜率即为施工速度.在六小时后,解题思路与追赶问题类似.【解答】解:设y1,y2分别为甲,乙施工长度.v1,v2分别为甲,乙施工速度.设以0h开始记时,施工时间为x小时.当2<x<6时,=10米/时,=5米/时.当x>6时,v1=10米/时.v2=5+7=12米/时.y1=10(x﹣6)+60=10xy2=12(x﹣6)+50=12x﹣22当甲乙两队同时完成时,y1=y2即:10x=12x﹣22.解得:x=11.所以河渠长度为:10×11=110米.故选:C.10.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1、S2,则S1+S2的值为()A.16B.17C.18D.19【考点】勾股定理.【分析】由图可得,S2的边长为3,由AC=BC,BC=CE=CD,可得AC=2CD,CD=2,EC=2;然后,分别算出S1、S2的面积,即可解答.【解答】解:如图,设正方形S1的边长为x,∵△ABC和△CDE都为等腰直角三角形,∴AB=BC,DE=DC,∠ABC=∠D=90°,∴sin∠CAB=sin45°==,即AC=BC,同理可得:BC=CE=CD,∴AC=BC=2CD,又∵AD=AC+CD=6,∴CD==2,∴EC2=22+22,即EC=2;∴S1的面积为EC2=2×2=8;∵∠MAO=∠MOA=45°,∴AM=MO,∵MO=MN,∴AM=MN,∴M为AN的中点,∴S2的边长为3,∴S2的面积为3×3=9,∴S1+S2=8+9=17.故选B.二、填空题11.已知﹣≤x≤1,则化简+|x﹣3|+的结果等于5.【考点】二次根式的性质与化简.【分析】根据二次根式的非负性化简即可.【解答】解:∵﹣≤x≤1,∴x﹣1≤0,x﹣3<0,2x+1≥0,∴+|x﹣3|+=|x﹣1|+|x﹣3|+|2x+1|=1﹣x+3﹣x+2x+1=5,故答案为:5.12.已知等边△ABC的两个顶点的坐标为A(0,4),B(0,﹣2),则点C的坐标为(3,1)或(﹣3,1).【考点】等边三角形的性质;坐标与图形性质.【分析】作CH⊥AB于H,根据点A和B的坐标,得AB=6.根据等腰三角形的三线合一的性质,得AH=B
本文标题:西安市XX中学2016-2017年八年级上第二次月考数学试卷含解析
链接地址:https://www.777doc.com/doc-7841003 .html