您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 四川省宜宾县2017届九年级下期中考试数学试题含答案
宜宾县2017年春期期中测试试题九年级数学(全卷共8页,完卷时间120分钟,满分120分)题号一二三总分总分人1718192021222324得分注意事项:1.答题前,必须把考号和姓名写在密封线内;2.直接在试卷上作答,不得将答案写到密封线内,不得加附页.一、选择题:(本大题共8个小题,每小题3分,共24分),以下各题均给出A、B、C、D四个选项,但其中只有一个是正确的,请将正确答案的代号直接填在题后的括号内.1.-9的相反数是()A.91B.9C.91D.-92.“一方有难,八方支援。”2013年4月20日四川省芦山县遭遇强烈地震灾害,我市某校师生共同为地震灾区捐款135000元用于灾后重建,把135000用科学记数法表示为()A.1.35×106B.13.5×105C.1.35×105D.13.5×1043.下列计算正确的是()A.1644xxxB.9423aaaC.4232abababD.13426aa4.如图,直线a、b被直线c所截,若a∥b,∠1=60°,那么∠2的度数为()A.120°B.90°C.60°D.30°5.已知一组数据3,7,9,10,x,12的众数是9,则这组数据的中位数是()A.9B.9.5C.3D.12得分评卷人学校______班级______姓名_______考号______密封线6.分式方程xx325的解是()A.x=3B.x=3C.x=34D.x=347.下面由8个完全相同的小正方体组成的几何体的主视图是()ABCD8.如图1,点E为矩形ABCD边AD上一点,点P,点Q同时从点B出发,点P沿BE→ED→DC运动到点C停止,点Q沿BC运动到点C停止,它们运动的速度都是1cm/s,设P,Q出发t秒时,△BPQ的面积为ycm,已知y与t的函数关系的图形如图2(曲线OM为抛物线的一部分),则下列结论::①AD=BE=5cm;②当0<t≤5时;252ty;③直线NH的解析式为y=-25t+27;④若△ABE与△QBP相似,则t=429秒。其中正确的结论个数为()A.4B.3C.2D.1二、填空题(本大题共8个小题,每小题3分,共24分),请把答案直接填在题中的横线上得分评卷人正面9.因式分解:24xyx=.10.不等式组的最小整数解是_________.11.某商场将一款空调按标价的八折出售,仍可获利10%,若该空调的进价为2000元,则标价为元12.如图,△ABC的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC绕点B逆时针旋转到△A′BC′的位置,且点A′、C′仍落在格点上,则图中阴影部分的面积约是.(结果用π的代数式表示)13.设x1、x2是方程x2+3x﹣3=0的两个实数根,则2112xxxx的值为14.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为.15.如图,面积为24的正方形ABCD中,有一个小正方形EFGH,其中E、F、G分别在AB、BC、FD上.若BF=,则小正方形的周长为16.已知:如图,AB=BC,∠ABC=90°,以AB为直径的⊙O交OC与点D,AD的延长线交BC于点E,过D作⊙O的切线交BC于点F.下列结论:①CD2=CE·CB;②4EF2=ED·EA;③∠OCB=∠EAB;④CDDF21.其中正确的只有.(填序号)三、解答题(本大题共8个题,共72分),解答应写出文字说明、证明过程或演算步骤.17.计算:(每题5分,共10分)得分评卷人12题图14题图15题图16题图BOACEFD(1)24)3()14.3(20030sin(2)18.(本小题6分)如图,正方形ABCD的对角线AC、BD交于点O,AE=BF。求证:DBEACF19.(本小题8分)减负提质“1+5”行动计划是我市教育改革的一项重要举措.某中学“阅读与演讲社团”为了了解本校学生的每周课外阅读时间,采用随机抽样的方式进行了问卷调查,调查结果分为“2小时以内”、“2小时~3小时”、“3小时~4小时”和“4小时以上”四个等级,分别用A、B、C、D表示,根据调查结果绘制成了如图所示的两幅不完整的统计图.由图中所给出的信息解答下列问题:(1)求出x的值,并将不完整的条形图补充完整;得分评卷人得分评卷人(2)在此次调查活动中,初三(1)班的两个学习小组内各有2人每周课外阅读时间都是4小时以上,现从这4人中任选2人去参加学校的知识抢答赛.用列表或画树状图的方法求选出的2人来自不同小组的概率.20.(本小题8分)如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=(k>0)的图象与BC边交于点E.(1)当F为AB的中点时,求该函数的解析式;(2)当k为何值时,△EFA的面积最大,最大面积是多少?得分评卷人21.(本小题8分)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2017年起逐月增加,据统计,该商城1月份销售自行车64辆,3月份销售了100辆.(1)若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?(2)考虑到自行车需求不断增加,该商城准备投入3万元再购进一批两种规格的自行车,已知A型车的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆.根据销售经验,A型车不少于B型车的2倍,但不超过B型车的2.8倍.假设所进车辆全部售完,为使利润最大,该商城应如何进货?22.(本小题10分)如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.(i=1:是指坡面的铅直高度BH与水平宽度AH的比)(1)求点B距水平面AE的高度BH;(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:1.414,1.732)得分评卷人23.(本小题10分)如图,在⊙O中,直径AB⊥CD,垂足为E,点M在OC上,AM的延长线交⊙O于点G,交过C的直线于F,∠1=∠2,连结CB与DG交于点N.(1)求证:CF是⊙O的切线;(2)求证:△ACM∽△DCN;(3)若点M是CO的中点,⊙O的半径为4,cos∠BOC=41,求BN的长.24.(本小题12分)如图1,已知抛物线的方程C1:1(2)()yxxmm(m>0)与x轴交于点B、C,与y轴交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)的条件下,在抛物线的对称轴上找一点H,使得BH+EH最小,求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.得分评卷人2017年宜宾县半期试题答案一、1—5B.C.DC.A6—8B.D.B二.9.)2)(2(yyx10.111.275012.133413.-514.215.16.①②④三.17.(1)91(2)218.略19.解:(1)由题得:x﹪+10﹪+15﹪+45﹪=1,解得x=30.调查总人数为180÷45﹪=400,B的人数为400×30﹪=120,C的人数为400×10﹪=40,补图(图中的B、C)(2)分别用P1、P2;Q1、Q2表示两个小组的4个同学,画树状图(或列表)如下:共有12种情况,2人来自不同的小组有8种情况,∴所求的概率为812=23.20.解:(1)∵在矩形OABC中,OA=3,OC=2,∴B(3,2),∵F为AB的中点,∴F(3,1),∵点F在反比例函数y=(k>0)的图象上,∴k=3,∴该函数的解析式为y=(x>0);(2)由题意知E,F两点坐标分别为E(,2),F(3,),∴S△EFA=AF•BE=×k(3﹣k),=k﹣k2=﹣(k2﹣6k+9﹣9)=﹣(k﹣3)2+当k=3时,S有最大值.S最大值=.21.解:(1)设平均增长率为x,根据题意得:64(1+x)2=100解得:x=0.25=25%或x=﹣2.25四月份的销量为:100(1+25%)=125辆,答:四月份的销量为125辆.(2)设购进A型车x辆,则购进B型车辆,根据题意得:2×≤x≤2.8×解得:30≤x≤35.利润W=(700﹣500)x+(1300﹣1000)=900+50x.∵50>0,∴W随着x的增大而增大.当x=35时,不是整数,故不符合题意,∴x=34,此时=13.答:为使利润最大,该商城应购进34辆A型车和13辆B型车.22.解:(1)过B作BG⊥DE于G,Rt△ABF中,i=tan∠BAH==,∴∠BAH=30°,∴BH=AB=5;(2)由(1)得:BH=5,AH=5,∴BG=AH+AE=5+15,Rt△BGC中,∠CBG=45°,∴CG=BG=5+15.Rt△ADE中,∠DAE=60°,AE=15,∴DE=AE=15.∴CD=CG+GE﹣DE=5+15+5﹣15=20﹣10≈2.7m.答:宣传牌CD高约2.7米.23.(1)证明:∵△BCO中,BO=CO,∴∠B=∠BCO,在Rt△BCE中,∠2+∠B=90°,又∵∠1=∠2,∴∠1+∠BCO=90°,即∠FCO=90°,∴CF是⊙O的切线;(2)证明:∵AB是⊙O直径,∴∠ACB=∠FCO=90°,∴∠ACB﹣∠BCO=∠FCO﹣∠BCO,即∠3=∠1,∴∠3=∠2,∵∠4=∠D,∴△ACM∽△DCN;(3)解:∵⊙O的半径为4,即AO=CO=BO=4,在Rt△COE中,cos∠BOC=41,∴OE=CO•cos∠BOC=4×=1,由此可得:BE=3,AE=5,由勾股定理可得:CE===,AC===2,BC===2,∵AB是⊙O直径,AB⊥CD,∴由垂径定理得:CD=2CE=2,∵△ACM∽△DCN,∴=,∵点M是CO的中点,CM=AO=×4=2,∴CN===,∴BN=BC﹣CN=2﹣=.24.解:(1)m=4………………………………2分(2):B(-2,0)C(4,0)E(0,2)1(42)*262BCES……………………5分(3)如图2,抛物线的对称轴是直线x=1,当H落在线段EC上时,BH+EH最小.设对称轴与x轴的交点为P,那么HPEOCPCO.因此234HP.解得32HP.所以点H的坐标为3(1,)2.…………………8分(4)①如图3,过点B作EC的平行线交抛物线于F,过点F作FF′⊥x轴于F′.由于∠BCE=∠FBC,所以当CEBCCBBF,即2BCCEBF时,△BCE∽△FBC.设点F的坐标为1(,(2)())xxxmm,由''FFEOBFCO,得1(2)()22xxmmxm.解得x=m+2.所以F′(m+2,0).由'COBFCEBF,得244mmBFm.所以2(4)4mmBFm.由2BCCEBF,得222(4)4(2)4mmmmm.整理,得0=16.此方程无解.………………10分图2图3图4②如图4,作∠CBF=45°交抛物线于F,过点F作FF′⊥x轴于F′,由于∠EBC=∠CBF,所以BEBCBCBF,即2BCBEBF时,△BCE∽△BFC.在Rt△BFF′中,由FF′=BF′,得1(2)()2xxmxm.解得x=2m.所以F′(2,0)m.所以BF′=2m+2,2(22)BFm.由2BCBEBF,得2(2)222(22)mm.解得222m.综合①、②,符合题意的m为222.…………………12分
本文标题:四川省宜宾县2017届九年级下期中考试数学试题含答案
链接地址:https://www.777doc.com/doc-7840580 .html