您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 阜阳市临泉县2015-2016学年八年级下期中数学试卷含答案解析
2015-2016学年安徽省阜阳市临泉县八年级(下)期中数学试卷一、选择题(共10小题,每小题4分,满分40分)1.函数中,自变量x的取值范围是()A.x>1B.x≥1C.x>﹣2D.x≥﹣22.下列各式中最简二次根式为()A.B.C.D.3.下列一元二次方程中无实数解的方程是()A.x2+2x+1=0B.x2+1=0C.x2=2x﹣1D.x2﹣4x﹣5=04.方程(x﹣5)(x﹣6)=x﹣5的解是()A.x=5B.x=5或x=6C.x=7D.x=5或x=75.方程(m+2)x|m|+4x+3m+1=0是关于x的一元二次方程,则()A.m=±2B.m=2C.m=﹣2D.m≠±26.如图,在数轴上表示实数的点可能是()A.点PB.点QC.点MD.点N7.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()A.42B.32C.42或32D.37或338.某种商品零售价经过两次降价后,每件的价格由原来的800元降为现在的578元,则平均每次降价的百分率为()A.10%B.12%C.15%D.17%9.如图,有两棵树,一棵高10米,另一棵树高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8米B.10米C.12米D.14米10.已知一元二次方程ax2+bx+c=0(a≠0)中,其中真命题有()①若a+b+c=0,则b2﹣4ac≥0;②若方程ax2+bx+c=0两根为﹣1和2,则2a+c=0;③若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根.A.1个B.2个C.3个D.0个二、填空题(本大题共4小题,每小题5分,共20分)11.比较与的大小关系是.12.若2<m<8,化简:﹣=.13.如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t≤8),连接DE,当△BDE是直角三角形时,t的值为.14.如图,在宽为20m,长为30m的矩形地面上修建两条同样宽的道路,余下部分作为耕地.根据图中数据,计算耕地的面积为m2.三、计算题(本大题共两题,每小题8分,共16分)15.(1)解方程:(2)计算:(+1)(﹣1)﹣(﹣2)2.16.先化简、再求值:,其中.四、本大题共两题,每小题8分,共16分17.已知直角三角形两边x、y的长满足=0,求第三边的长.18.有一块薄铁皮ABCD,∠B=90°,各边的尺寸如图所示,若对角线AC剪开,得到的两块都是“直角三角形”形状吗?为什么?五、本大题共两题,每小题10分,共20分19.为丰富学生的学习生活,某校九年级组织学生参加春游活动,所联系的旅行社收费标准如下:春游活动结束后,该班共支付给该旅行社活动费用2800元,请问该班共有多少人参加这次春游活动?20.关于x的一元二次方程(a﹣6)x2﹣8x+9=0有实根.(1)求a的最大整数值;(2)当a取最大整数值时,①求出该方程的根;②求2x2﹣的值.六、本大题共12分21.观察下列各式及验证过程:,验证;=,验证=,验证(1)按照上述三个等式及其验证过程中的基本思想,猜想的变形结果并进行验证.(2)针对上述各式反映的规律,写出用n(n为任意的自然数,且n≥2)表示的等式,并给出证明.七、本大题共12分22.某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m),另三边用木栏围成,木栏长40m.①鸡场的面积能达到180m2吗?能达到200m2吗?②鸡场的面积能达到250m2吗?如果能,请你给出设计方案;如果不能,请说明理由.八、本大题共14分23.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边长分别为a、b、c,设△ABC的面积为S,周长为l.(1)填表:三边a、b、ca+b﹣c3、4、525、12、1348、15、176(2)如果a+b﹣c=m,观察上表猜想:=,(用含有m的代数式表示);(3)说出(2)中结论成立的理由.2015-2016学年安徽省阜阳市临泉县八年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.函数中,自变量x的取值范围是()A.x>1B.x≥1C.x>﹣2D.x≥﹣2【考点】函数自变量的取值范围.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x﹣1>0,解得:x>1.故选A.【点评】考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.2.下列各式中最简二次根式为()A.B.C.D.【考点】最简二次根式.【分析】根据最简二次根式被开方数不含分母,被开方数不含开的尽的因数或因式,可得答案.【解答】解:A、被开方数不含分母,被开方数不含开的尽的因数或因式,故A正确;B、被开方数含开的尽的因数或因式,故B错误;C、被开方数含分母,故C错误;D、被开方数含分母,故D错误;故选:A.【点评】本题考查了最简二次根式,最简二次根式的两个条件:被开方数不含分母,被开方数不含开的尽的因数或因式.3.下列一元二次方程中无实数解的方程是()A.x2+2x+1=0B.x2+1=0C.x2=2x﹣1D.x2﹣4x﹣5=0【考点】根的判别式.【专题】计算题.【分析】找出各项方程中a,b及c的值,进而计算出根的判别式的值,找出根的判别式的值小于0时的方程即可.【解答】解:A、这里a=1,b=2,c=1,∵△=4﹣4=0,∴方程有两个相等的实数根,本选项不合题意;B、这里a=1,b=0,c=1,∵△=﹣4<0,∴方程没有实数根,本选项符合题意;C、这里a=1,b=﹣2,c=1,∵△=4﹣4=0,∴方程有两个相等的实数根,本选项不合题意;D、这里a=1,b=﹣4,c=﹣5,∵△=16+20=36>0,∴方程有两个不相等的实数根,本选项不合题意,故选B【点评】此题考查了根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.4.方程(x﹣5)(x﹣6)=x﹣5的解是()A.x=5B.x=5或x=6C.x=7D.x=5或x=7【考点】解一元二次方程-因式分解法.【分析】方程左右两边都含有(x﹣5),将其看做一个整体,然后移项,再分解因式求解.【解答】解:(x﹣5)(x﹣6)=x﹣5(x﹣5)(x﹣6)﹣(x﹣5)=0(x﹣5)(x﹣7)=0解得:x1=5,x2=7;故选D.【点评】本题考查了解一元二次方程的方法,当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.5.方程(m+2)x|m|+4x+3m+1=0是关于x的一元二次方程,则()A.m=±2B.m=2C.m=﹣2D.m≠±2【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.由这两个条件得到相应的关系式,再求解即可.【解答】解:由题意得:|m|=2且m+2≠0,由解得得m=±2且m≠﹣2,∴m=2.故选B.【点评】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.6.如图,在数轴上表示实数的点可能是()A.点PB.点QC.点MD.点N【考点】估算无理数的大小;实数与数轴.【分析】先对进行估算,再确定是在哪两个相邻的整数之间,然后确定对应的点即可解决问题.【解答】解:∵≈3.87,∴3<<4,∴对应的点是M.故选C【点评】本题考查实数与数轴上的点的对应关系,应先看这个无理数在哪两个有理数之间,进而求解.7.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()A.42B.32C.42或32D.37或33【考点】勾股定理.【分析】在直角△ACD与直角△ABD中,根据勾股定理即可求得BD,CD的长,得到BC的长.即可求解.【解答】解:直角△ACD中:CD===9;在直角△ABD中:BD===5.当D在线段BC上时,如图(1):BC=BD+CD=14,△ABC的周长是:15+13+14=42;当D在线段BC的延长线上时,如图(2):BC=CD﹣BD=4,△ABC的周长是:15+13+4=32;故△ABC的周长是42或32.故选C.【点评】此题考查了勾股定理及解直角三角形的知识,在解本题时应分两种情况进行讨论,易错点在于漏解,同学们思考问题一定要全面,有一定难度.8.某种商品零售价经过两次降价后,每件的价格由原来的800元降为现在的578元,则平均每次降价的百分率为()A.10%B.12%C.15%D.17%【考点】一元二次方程的应用.【专题】增长率问题.【分析】设平均每次降价的百分率为x,那么第一次降价后为800(1﹣x),第二次降价后为800(1﹣x)(1﹣x),然后根据每件的价格由原来的800元降为现在的578元即可列出方程,解方程即可.【解答】解:设平均每次降价的百分率为x,依题意得800(1﹣x)2=578,∴(1﹣x)2=,∴1﹣x=±0.85,∴x=0.15=15%或x=1.85(舍去).答:平均每次降价的百分率为15%.故选C.【点评】此题主要考查了增长率的问题,一般公式为原来的量×(1±x)2=后来的量,增长用+,减少用﹣.9.如图,有两棵树,一棵高10米,另一棵树高4米,两树相距8米.一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.8米B.10米C.12米D.14米【考点】勾股定理的应用.【分析】根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【解答】解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6m,在Rt△AEC中,AC==10(m),故小鸟至少飞行10m.故选:B.【点评】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.10.已知一元二次方程ax2+bx+c=0(a≠0)中,其中真命题有()①若a+b+c=0,则b2﹣4ac≥0;②若方程ax2+bx+c=0两根为﹣1和2,则2a+c=0;③若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根.A.1个B.2个C.3个D.0个【考点】根的判别式.【专题】压轴题.【分析】①a+b+c=0,即系数和为0,说明原方程有一根是1,a≠0,说明原方程为一元二次方程,一元二次方程有根,就有两个,△≥0;②已知方程两根的值,可利用两根关系的式子变形,得出结论;③判断方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.【解答】解:①若a+b+c=0,方程ax2+bx+c=0有一根为1,又a≠0,则b2﹣4ac≥0,正确;②由两根关系可知,﹣1×2=,整理得:2a+c=0,正确;③若方程ax2+c=0有两个不相等的实根,则﹣4ac>0,可知b2﹣4ac>0,故方程ax2+bx+c=0必有两个不相等的实根,正确.正确命题有三个,故选C.【点评】本题考查一元二次方程根的判别式与方程系数的关系,同时考查了学生的综合应用能力及推理能力.二、填空题(本大题共4小题,每小题5分,共20分)11.比较与的大小关系是<.【考点】实数大小比较.【专题】常规题型.【分析】因为是两个无理数比较大小,所以应把根号外的数整理到根号内再进行比较.【解答】解
本文标题:阜阳市临泉县2015-2016学年八年级下期中数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7838524 .html