您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2015-2016年潮州市饶平县八年级上期末数学试卷含答案解析
2015-2016学年广东省潮州市饶平县八年级(上)期末数学试卷一、选择题(共8小题,每小题3分,满分24分)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.如图,在△ABC中,∠A=50°,∠C=70°,则外角∠ABD的度数是()A.110°B.120°C.130°D.140°3.如图,△ABC≌△CDA,并且BC=DA,那么下列结论错误的是()A.∠1=∠2B.AC=CAC.AB=ADD.∠B=∠D4.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17B.15C.13D.13或175.计算(﹣xy2)3,结果正确的是()A.x3y5B.﹣x3y6C.x3y6D.﹣x3y56.如图:若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2B.3C.5D.2.57.要使分式有意义,则x的取值应满足()A.x≠2B.x≠﹣1C.x=2D.x=﹣18.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)9.电工师傅在安好电线杆后,为了防止电线杆倾倒,常常按图所示引两条拉线,这样做的数学道理是.10.x2+kx+9是完全平方式,则k=.11.一个多边形的每一个内角都是120°,则这个多边形是边形.12.如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,DC=3,则点D到AB的距离是.13.因式分解:x3﹣xy2=.14.若代数式的值等于0,则x=.三、解答题(共6小题,满分36分)15.解分式方程:+=1.16.若关于x的多项式(x2+x﹣n)(mx﹣3)的展开式中不含x2和常数项,求m,n的值.17.已知a,b,c是三角形的三边长,化简|a﹣b﹣c|+|b﹣c﹣a|;若a=5,b=4,c=3,求这个式子的值.18.已知,如图,在△ABC中,∠ACB=90°,AE是角平分线,CD是高,AE、CD相交于点F,求证:∠CEF=∠CFE.19.如图,△ABC中,AB=AC,BD⊥AC,CE⊥AB.求证:BD=CE.20.如图,在平面直角坐标系中,A(﹣1,5)、B(﹣1,0)、C(﹣4,3).(1)在图中作出△ABC关于y轴的对称图形△A1B1C1.(2)写出点A1、B1、C1的坐标.四、解答题(共3小题,满分22分)21.如图,△ABC中,AB=AC,AD⊥BC,CE⊥AB,AE=CE.求证:(1)△AEF≌△CEB;(2)AF=2CD.22.仔细阅读下面例题,解答问题:例题:已知二次三项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得x2﹣4x+m=(x+3)(x+n)则x2﹣4x+m=x2+(n+3)x+3n∴解得:n=﹣7,m=﹣21∴另一个因式为(x﹣7),m的值为﹣21问题:仿照以上方法解答下面问题:已知二次三项式2x2+3x﹣k有一个因式是(x+4),求另一个因式以及k的值.23.探索归纳:(1)如图1,已知△ABC为直角三角形,∠A=90°,若沿图中虚线剪去∠A,则∠1+∠2等于A.90°B.135°C.270°D.315°(2)如图2,已知△ABC中,∠A=40°,剪去∠A后成四边形,则∠1+∠2=(3)如图2,根据(1)与(2)的求解过程,请你归纳猜想∠1+∠2与∠A的关系是(4)如图3,若没有剪掉,而是把它折成如图3形状,试探究∠1+∠2与∠A的关系并说明理由.2015-2016学年广东省潮州市饶平县八年级(上)期末数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.【点评】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.如图,在△ABC中,∠A=50°,∠C=70°,则外角∠ABD的度数是()A.110°B.120°C.130°D.140°【考点】三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:由三角形的外角性质的,∠ABD=∠A+∠C=50°+70°=120°.故选B.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.3.如图,△ABC≌△CDA,并且BC=DA,那么下列结论错误的是()A.∠1=∠2B.AC=CAC.AB=ADD.∠B=∠D【考点】全等图形.【分析】根据全等三角形的性质进行分析,从而得到答案,做题时要找准对应边,对应角.【解答】解:∵△ABC≌△CDA,BC=DA∴AB=CD,∠1=∠2,AC=CA,∠B=∠D,∴A,B,D是正确的,C、AB=AD是错误的.故选C.【点评】本题较简单,只要熟知三角形全等的性质即可,三角形全等时,对应角相等,对应边分别相等,找对应角,对应边是比较关键的.4.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17B.15C.13D.13或17【考点】等腰三角形的性质;三角形三边关系.【专题】分类讨论.【分析】由于未说明两边哪个是腰哪个是底,故需分:(1)当等腰三角形的腰为3;(2)当等腰三角形的腰为7;两种情况讨论,从而得到其周长.【解答】解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选:A.【点评】本题考查的是等腰三角形的性质,在解答此题时要注意进行分类讨论.5.计算(﹣xy2)3,结果正确的是()A.x3y5B.﹣x3y6C.x3y6D.﹣x3y5【考点】幂的乘方与积的乘方.【专题】计算题.【分析】根据积的乘方的性质进行计算,然后再选取答案.【解答】解:原式=﹣()3x3y6=﹣x3y6.故选:B.【点评】本题考查了积的乘方的性质:等于把每个因式分别乘方,再把所得的幂相乘.6.如图:若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()A.2B.3C.5D.2.5【考点】全等三角形的性质.【专题】计算题.【分析】根据全等三角形性质求出AC,即可求出答案.【解答】解:∵△ABE≌△ACF,AB=5,∴AC=AB=5,∵AE=2,∴EC=AC﹣AE=5﹣2=3,故选B.【点评】本题考查了全等三角形的性质的应用,注意:全等三角形的对应边相等,对应角相等.7.要使分式有意义,则x的取值应满足()A.x≠2B.x≠﹣1C.x=2D.x=﹣1【考点】分式有意义的条件.【分析】根据分式有意义,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣2≠0,解得x≠2.故选:A.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.8.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式.【解答】解:根据题意,得.故选:C.【点评】理解题意是解答应用题的关键,找出题中的等量关系,列出关系式.二、填空题(共6小题,每小题3分,满分18分)9.电工师傅在安好电线杆后,为了防止电线杆倾倒,常常按图所示引两条拉线,这样做的数学道理是三角形的稳定性.【考点】三角形的稳定性.【分析】根据三角形的三边一旦确定,则形状大小完全确定,即三角形的稳定性.【解答】解:结合图形,为了防止电线杆倾倒,常常按图所示引两条拉线,两条拉线与地面就构成了三角形,所以这样做根据的数学道理是三角形的稳定性.故答案是:三角形的稳定性.【点评】本题考查三角形稳定性的实际应用.三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.10.x2+kx+9是完全平方式,则k=±6.【考点】完全平方式.【分析】这里首末两项是x和3这两个数的平方,那么中间一项为加上或减去x和3的积的2倍,故k=±6.【解答】解:中间一项为加上或减去x和3的积的2倍,故k=±6.【点评】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.11.一个多边形的每一个内角都是120°,则这个多边形是六边形.【考点】多边形内角与外角.【分析】一个多边形的每一个内角都等于120°,根据内角与相邻的外角互补,因而每个外角是60度.根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出多边形的边数.【解答】解:180﹣120=60,多边形的边数是:360÷60=6.则这个多边形是六边形.【点评】已知多边形的内角求边数,可以根据多边形的内角与外角的关系来解决.12.如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,DC=3,则点D到AB的距离是3.【考点】角平分线的性质.【分析】根据角平分线上的点到角的两边的距离相等可得DE=DC即可得解.【解答】解:作DE⊥AB于E,∵AD是∠CAB的角平分线,∠C=90°,∴DE=DC,∵DC=3,∴DE=3,即点D到AB的距离DE=3.故答案为:3.【点评】本题主要考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.13.因式分解:x3﹣xy2=x(x﹣y)(x+y).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣xy2=x(x2﹣y2)=x(x﹣y)(x+y).故答案为:x(x﹣y)(x+y).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.若代数式的值等于0,则x=﹣3.【考点】分式的值为零的条件.【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由题意可得:x2﹣9=0且2x﹣6≠0,解得x=﹣3,故答案为:﹣3.【点评】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.三、解答题(共6小题,满分36分)15.解分式方程:+=1.【考点】解分式方程.【分析】根据解分式方程的一般步骤,可得分式方程的解.【解答】解:方程两边都乘以(x+3)(x﹣3),得3+x(x+3)=x2﹣93+x2+3x=x2﹣9解得x=﹣4检验:把x=﹣4代入(x+3)(x﹣3)≠0,∴x=﹣4是原分式方程的解.【点评】本题考查了解分式方程,先求出整式方程的解,检验后判定分式方程解的情况.16.若关于x的多项式(x2+x﹣n)(mx﹣3)的展开式中不含x2和常数项,求m,n的值.【考点】多项式乘多项式.【专题】计算题;整式.【分析】原式利用多项式乘以多项式法则计算,根据展开式中不含x2和常数项,确定出m与n的值即可.【解答】解:原式=mx3+(m﹣3)x2﹣(3+mn)x+3n,由展开式中不含x2和常数项,得到3﹣m=0,3n=0,解得:m=3,n=0.【点评】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.1
三七文档所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
本文标题:2015-2016年潮州市饶平县八年级上期末数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7837147 .html