您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 其它文档 > 2019中考一轮复习《第十二单元全等三角形》单元检测试卷含答案
2019中考数学一轮复习单元检测试卷第十二单元全等三角形考试时间:120分钟;满分:150分学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,每小题4分,共40分)1.下列图形是全等图形的是()A.B.C.D.2.如图,点F,C在BE上,△ABC≌△DEF,AB和DE,AC和DF是对应边,AC,DF交于点M,则∠AMF等于()A.2∠BB.2∠ACBC.∠A+∠DD.∠B+∠ACB第2题第3题第4题第5题3.如图,已知∠1=∠2,添加下列某条件,未必能判定△ABC≌BAD的是()A.AC=BDB.AD=BCC.∠l=∠2D.∠C=∠D4.如图,△ABC中,AD⊥BC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AB=AC;(3)∠B=∠C;(4)AD是△ABC的一条角平分线.其中正确的有()5.如图,在△PAB中,PA=PB,D、E、F分别是边PA,PB,AB上的点,且AD=BF,BE=AF,若∠DFE=34°,则∠P的度数为()A.112°B.120°C.146°D.150°6.已知AD是△ABC的边BC上的中线,AB=12,AC=8,则边BC及中线AD的取值范围得分评卷人分别是()A.4<BC<20,2<AD<10B.4<BC<20,4<AD<20C.2<BC<10,2<AD<10D.2<BC<10,4<AD<207.如图,AB=CD,AE⊥BC,DF⊥BC,垂足分别为E,F,CE=BF,下列结论错误的是()A.∠C=∠BB.DF∥AEC.∠A+∠D=90°D.CF=BE8.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带()去.A.第1块B.第2块C.第3块D.第4块第7题第8题第9题第10题9.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=AC•BD,其中正确的结论有()A.①②B.①③C.②③D.①②③10.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE⊥AB于点E,则下列结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④若AC=4BE,则S△ABC=8S△BDE.其中正确的有()A.1个B.2个C.3个D.4个二、填空题(本大题共4小题,每小题5分,共20分)11.如图,在△ABC中,AB=3,AC=2,BC边上的中线AD的长是整数,则AD=.得分评卷人第11题第12题第13题第14题12.如图,△ABC≌△ADE,线段BC的延长线过点E,与线段AD交于点F,∠ACB=∠AED=108°,∠CAD=12°,∠B=48°,则∠DEF的度数.13.如图,AB=AC,要说明△ADC≌△AEB,添加的条件可以是(填写序号即可)①∠B=∠C②DC=BE③AD=AE④∠ADC=∠AEB14.在平面直角坐标系中,点A、B、C的坐标分别为A(8,0),B(2,6),C(4,0),点P,Q是△ABO边上的两个动点(点P不与点C重合),以P,O,Q为顶点的三角形与△COQ全等,则满足条件的点P的坐标为.三、解答题(本大题共9小题,满分90分,其中第15,16,17,18题每题8分,19,20题每题10分,21,22题每题12分,23题14分)15.如图,△ACE≌△DBF,AC=6,BC=4.(1)求证:AE∥DF;(2)求AD的长度.16.如图,已知AB∥CF,D是AB上一点,DF交AC于点E,若AB=BD+CF,求证:△ADE≌△CFE.得分评卷人17.已知:如图,P是OC上一点,PD⊥OA于D,PE⊥OB于E,F、G分别是OA、OB上的点,且PF=PG,DF=EG.求证:OC是∠AOB的平分线.18.如图,已知点B,E,C,F在一条直线上,BE=CF,AC∥DE,∠A=∠D.(1)求证:△ABC≌△DFE;(2)若BF=14,EC=4,求BC的长.19.在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图,当点D在BC延长线上移动时,若∠BAC=25°,则∠DCE=.(2)设∠BAC=α,∠DCE=β.①当点D在BC延长线上移动时,α与β之间有什么数量关系?请说明理由;②当点D在直线BC上(不与B,C两点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.20.如图1,点A是线段DE上一点,∠BAC=90°,AB=AC,BD⊥DE,CE⊥DE,(1)求证:DE=BD+CE.(2)如果是如图2这个图形,BD、CE、DE有什么数量关系?并证明.21.在△ABC中,D为BC上一点,连接AD,过点B作BE垂直于CA的延长线于点E,BE与DA的延长线相交于点F.(1)如图1,若AB平分∠CBE,∠ADB=30°,AE=3,AC=7,求CD的长;(2)如图2,若AB=AC,∠ADB=45°,求证;BC=DF.22.在△ABC中,AC=BC,D,E,F分别是直线AC,AB,BC上的点,且AD=BE,AE=BF.(1)如图1,若∠DEF=30°,求∠ACB的度数;(2)设∠ACB=x°,∠DEF=y°,∠AED=z°.①求y与x之间的数量关系;②如图2,E为AB的中点,求y与z之间的数量关系;③如图2,E为AB的中点,若DF与AB之间的距离为8,AC=16,求△ABC的面积.23.如图,在△ABC中,∠ABC的平分线BE与∠ACB外角的平分线CE交于点E.(1)如图1,若∠BAC=40°,求∠BEC的度数;(2)如图2,将∠BAC变为60°,则∠BEC=°.并直接写出∠BAC与∠BEC的关系;(3)在图1的基础上过点E分别作EN⊥BA于N,EQ⊥AC于Q,EM⊥BD于M,如图3,求证:△ANE≌AQE,并直接写出∠NAE的度数.参考答案与试题解析一.选择题(共10小题)1.解:A、两个图形相似,错误;B、两个图形全等,正确;C、两个图形相似,错误;D、两个图形不全等,错误;故选:B.2.解:∵△ABC≌△DEF,∴∠ACB=∠DFE,∵∠AMF=∠ACB+∠DFE,∴∠AMF=2∠ACB,故选:B.3.解:A、∵AC=BD,∠1=∠2,AB=AB,∴根据SAS能推出△ABC≌△BAD,故本选项错误;B、根据AD=BC和已知不能推出△ABC≌△BAD,故本选项正确;C、∵∠1=∠2,AB=AB,∠1=∠2,∴根据ASA能推出△ABC≌△BAD,故本选项错误;D、∵∠C=∠D,∠1=∠2,AB=AB,∴根据AAS能推出△ABC≌△BAD,故本选项错误;故选:B.4.解:∵AD=AD、∠ADB=∠ADC、BD=CD∴(1)△ABD≌△ACD正确;∴(2)AB=AC正确;(3)∠B=∠C正确;∠BAD=∠CAD∴(4)AD是△ABC的角平分线.故选:D.5.解:∵PA=PB,∴∠A=∠B,在△ADF和△BFE中,,∴△ADF≌△BFE(SAS),∴∠ADF=∠BFE,∵∠DFB=∠DFE+∠EFB=∠A+∠ADF,∴∠A=∠DFE=34°,∴∠P=180°﹣∠A﹣∠B=112°,故选:A.6.解:如图所示,在△ABC中,则AB﹣AC<BC<AB+AC,即12﹣8<BC<12+8,4<BC<20,延长AD至点E,使AD=DE,连接BE,∵AD是△ABC的边BC上的中线,∴BD=CD,又∠ADC=∠BDE,AD=DE∴△ACD≌△EBD(SAS),∴BE=AC,在△ABE中,AB﹣BE<AE<AB+BE,即AB﹣AC<AE<AB+AC,12﹣8<AE<12+8,即4<AE<20,∴2<AD<10.故选:A.7.解:∵CE=BF,∴CE﹣EF=BF=EF,∴CF=BE,∵AE⊥BC,DF⊥BC,∴∠CFD=∠AEB=90°,在Rt△CFD和Rt△BEA中,,∴Rt△CFD≌Rt△BEA(HL),∴∠C=∠B,∠D=∠A,∴CD∥AB,故A,B,D正确,∵∠C+∠D=90°,∴∠A+∠C=90°,故C错误,故选:C.8.解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:B.9.解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),故①正确;∴∠ADB=∠CDB,在△AOD与△COD中,,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC,∴AC⊥DB,故②正确;四边形ABCD的面积=,故③正确;故选:D.10.解:∵AD平分∠BAC,∴∠DAC=∠DAE,∵∠C=90°,DE⊥AB,∴∠C=∠E=90°,∵AD=AD,∴△DAC≌△DAE(AAS),∴∠CDA=∠EDA,∴①AD平分∠CDE正确;无法证明∠BDE=60°,∴③DE平分∠ADB错误;∵BE+AE=AB,AE=AC,∵AC=4BE,∴AB=5BE,AE=4BE,∴S△ADB=5S△BDE,S△ADC=4S△BDE,∴S△ABC=9S△BDE,∴④错误;∵∠BDE=90°﹣∠B,∠BAC=90°﹣∠B,∴∠BDE=∠BAC,∴②∠BAC=∠BDE正确.故选:B.二.填空题(共4小题)11.解:如右图,AB=3,AC=2,AD是BC上的中线,延长AD到E,使DE=AD,连接BE,∵AD=DE,∠ADC=∠EDB,BD=CD,∴△ADC≌△EDB(SAS),∴BE=AC=2,在△ABE中,BE﹣AB<AE<AB+BE,即1<2AD<5,解得<AD<,又∵AD是整数,∴AD=1或2,故答案为:1或2.12.解:∵∠ACB=108°,∠B=48°,∴∠CAB=180°﹣∠B﹣∠ACB=180°﹣48°﹣108°=24°.又∵△ABC≌△ADE,∴∠EAD=∠CAB=24°.又∵∠EAB=∠EAD+∠CAD+∠CAB,∠CAD=12°,∴∠EAB=24°+12°+24°=60°,∴∠AEB=180°﹣∠EAB﹣∠B=180°﹣60°﹣48°=72°,∴∠DEF=∠AED﹣∠AEB=108°﹣72°=36°.故答案为:36°13.解:在△ADC和△AEB中,∵AC=AB,∠A=∠A,如果根据SAS证明△ADC≌△AEB,需要添加AD=AE,如果根据AAS证明△ADC≌△AEB,需要添加∠ADC=∠AEB,如果根据ASA证明△ADC≌△AEB,需要添加∠C=∠B,故答案为①③④.14.解:以P,O,Q为顶点的三角形与△COQ全等,①如图1所示,当△POQ≌△COQ时,即OP=OC=1,过P作PE⊥OA于E,过B作BF⊥OA于F,则PE∥BF,∵B(2,6),∴OF=2,BF=6,∴OB==2,∵PE∥BF,∴△POE∽△BOF,∴,∴==,∴PE=,OE=,∴点P的坐标为(,);②如图2,当△POQ≌△CQO时,即QP=OC=4,OP=CQ,∴四边形PQCO是平行四边形,∴PQ∥OA,过P作PE⊥OA于E,过B作BF⊥OA于F,则PE∥BF,∵B(2,6),∴OF=2,BF=6,∴OB==2,∵PQ∥OA,∴=,∴PB=,∴PE=,∴点P是OB的中点,∵PE∥BF,∴PE=BF=3,OE=EF=1,∴点P的坐标为(1,3),综上所述,点P的坐标为(,)或(1,3).故答案为:(,)或(1,3).三.解答题(共9小题)15.证明:(1)∵△ACE≌△DBF,∴∠A=∠D,∴AE∥DF.(2)∵△ACE≌△DBF,∴AC=DB,∴AB=DC=AC﹣BC=6﹣4=2,∴AD=AC+CD=6+2=8.16.证明:∵AB=BD+CF,又∵AB=BD+AD,∴CF=AD∵AB∥CF,∴∠A=∠ACF,∠ADF=∠F在△ADE与△CFE中,∴△ADE≌△CFE(ASA).17.证明:在Rt△
三七文档所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
本文标题:2019中考一轮复习《第十二单元全等三角形》单元检测试卷含答案
链接地址:https://www.777doc.com/doc-7561375 .html