您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 2014年中考数学试题分类汇编---反比例函数
反比例函数一、选择题1.(2014•福建泉州,第7题3分)在同一平面直角坐标系中,函数y=mx+m与y=(m≠0)的图象可能是()A.B.C.D.考点:反比例函数的图象;一次函数的图象.分析:先根据一次函数的性质判断出m取值,再根据反比例函数的性质判断出m的取值,二者一致的即为正确答案.解答:解:A、由函数y=mx+m的图象可知m>0,由函数y=的图象可知m>0,故本选项正确;B、由函数y=mx+m的图象可知m<0,由函数y=的图象可知m>0,相矛盾,故本选项错误;C、由函数y=mx+m的图象y随x的增大而减小,则m<0,而该直线与y轴交于正半轴,则m>0,相矛盾,故本选项错误;D、由函数y=mx+m的图象y随x的增大而增大,则m>0,而该直线与y轴交于负半轴,则m<0,相矛盾,故本选项错误;故选:A.点评:本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.2.(2014•广西贺州,第10题3分)已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一次函数y=cx+与反比例函数y=在同一坐标系内的大致图象是()A.B.C.D.考点:二次函数的图象;一次函数的图象;反比例函数的图象.分析:先根据二次函数的图象得到a>0,b<0,c<0,再根据一次函数图象与系数的关系和反比例函数图象与系数的关系判断它们的位置.解答:解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣>0,∴b<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴一次函数y=cx+的图象过第二、三、四象限,反比例函数y=分布在第二、四象限.故选B.点评:本题考查了二次函数的图象:二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象为抛物线,当a>0,抛物线开口向上;当a<0,抛物线开口向下.对称轴为直线x=﹣;与y轴的交点坐标为(0,c).也考查了一次函数图象和反比例函数的图象.新课标第一网3.(2014年天津市,第9题3分)已知反比例函数y=,当1<x<2时,y的取值范围是()A.0<y<5B.1<y<2C.5<y<10D.y>10考点:反比例函数的性质.分析:将x=1和x=2分别代入反比例函数即可确定函数值的取值范围.解答:解:∵反比例函数y=中当x=1时y=10,当x=2时,y=5,∴当1<x<2时,y的取值范围是5<y<10,故选C.点评:本题考查了反比例函数的性质:(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.4.(2014•新疆,第11题5分)若点A(1,y1)和点B(2,y2)在反比例函数y=图象上,则y1与y2的大小关系是:y1y2(填“>”、“<”或“=”).考点:反比例函数图象上点的坐标特征.分析:直接把点A(1,y1)和点B(2,y2)代入反比例函数y=,求出点y1,y2的值,再比较出其大小即可.解答:解:∵点A(1,y1)和点B(2,y2)在反比例函数y=的图象上,∴y1==1,y2=,∵1>,∴y1>y2.故答案为:>.点评:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.5.(2014•温州,第10题4分)如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y轴,且对角线的交点与原点O重合.在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数y=(k≠0)中k的值的变化情况是()A.一直增大B.一直减小C.先增大后减小D.先减小后增大考点:反比例函数图象上点的坐标特征;矩形的性质.分析:设矩形ABCD中,AB=2a,AD=2b,由于矩形ABCD的周长始终保持不变,则a+b为定值.根据矩形对角线的交点与原点O重合及反比例函数比例系数k的几何意义可知k=AB•AD=ab,再根据a+b一定时,当a=b时,ab最大可知在边AB从小于AD到大于AD的变化过程中,k的值先增大后减小.解答:解:设矩形ABCD中,AB=2a,AD=2b.∵矩形ABCD的周长始终保持不变,∴2(2a+2b)=4(a+b)为定值,∴a+b为定值.∵矩形对角线的交点与原点O重合∴k=AB•AD=ab,又∵a+b为定值时,当a=b时,ab最大,∴在边AB从小于AD到大于AD的变化过程中,k的值先增大后减小.故选C.点评:本题考查了矩形的性质,反比例函数比例系数k的几何意义及不等式的性质,有一定难度.根据题意得出k=AB•AD=ab是解题的关键.6.(2014•四川自贡,第9题4分)关于x的函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象大致是()A.B.C.D.考点:反比例函数的图象;一次函数的图象分析:根据反比例函数的比例系数可得经过的象限,一次函数的比例系数和常数项可得一次函数图象经过的象限.解答:解:若k>0时,反比例函数图象经过一三象限;一次函数图象经过一二三象限,所给各选项没有此种图形;若k<0时,反比例函数经过二四象限;一次函数经过二三四象限,D答案符合;故选D.点评:考查反比例函数和一次函数图象的性质;若反比例函数的比例系数大于0,图象过一三象限;若小于0则过二四象限;若一次函数的比例系数大于0,常数项大于0,图象过一二三象限;若一次函数的比例系数小于0,常数项小于0,图象过二三四象限.关于x的函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象大致是()A.B.C.D.考点:反比例函数的图象;一次函数的图象分析:根据反比例函数的比例系数可得经过的象限,一次函数的比例系数和常数项可得一次函数图象经过的象限.解答:解:若k>0时,反比例函数图象经过一三象限;一次函数图象经过一二三象限,所给各选项没有此种图形;若k<0时,反比例函数经过二四象限;一次函数经过二三四象限,D答案符合;故选D.点评:考查反比例函数和一次函数图象的性质;若反比例函数的比例系数大于0,图象过一三象限;若小于0则过二四象限;若一次函数的比例系数大于0,常数项大于0,图象过一二三象限;若一次函数的比例系数小于0,常数项小于0,图象过二三四象限.7.(2014·云南昆明,第8题3分)左下图是反比例函数)0(kkxky为常数,的图像,则一次函数kkxy的图像大致是()考点:反比例函数的图象;一次函数的图象.分析:根据反比例函数的图象,可知0k,结合一次函数的图象性质进行判断即可.解答:解:根据反比例函数的图象经过一、三象限,可知0k,由一次函数kkxy,可知:0k时,图象从左至右呈上升趋势,),0(k是图象与y轴的交点,0k所以交点在y轴负半轴上.故选B.点评:本题考查了反比例函数的图象性质和一次函数函数的图象性质,要掌握它们的性质才能灵活解题.8.(2014•湘潭,第8题,3分)如图,A、B两点在双曲线y=上,分别经过A、B两点向轴作垂线段,已知S阴影=1,则S1+S2=()(第1题图)A.3B.4C.5D.6DCBAOOOOOxxxxyyyyyxxky考点:反比例函数系数k的几何意义.分析:欲求S1+S2,只要求出过A、B两点向x轴、y轴作垂线段求出与坐标轴所形成的矩形的面积即可,而矩形面积为双曲线y=的系数k,由此即可求出S1+S2.解答:解:∵点A、B是双曲线y=上的点,分别经过A、B两点向x轴、y轴作垂线段,则根据反比例函数的图象的性质得两个矩形的面积都等于|k|=4,∴S1+S2=4+4﹣1×2=6.故选D.点评:本题主要考查了反比例函数的图象和性质及任一点坐标的意义,有一定的难度.9.(2014•益阳,第6题,4分)正比例函数y=6x的图象与反比例函数y=的图象的交点位于()A.第一象限B.第二象限C.第三象限D.第一、三象限考点:反比例函数与一次函数的交点问题.新*课*标*第*一*网分析:根据反比例函数与一次函数的交点问题解方程组即可得到两函数的交点坐标,然后根据交点坐标进行判断.解答:解:解方程组得或,所以正比例函数y=6x的图象与反比例函数y=的图象的交点坐标为(1,6),(﹣1,﹣6).故选D.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.10.(2014•株洲,第4题,3分)已知反比例函数y=的图象经过点(2,3),那么下列四个点中,也在这个函数图象上的是()A.(﹣6,1)B.(1,6)C.(2,﹣3)D.(3,﹣2)考点:反比例函数图象上点的坐标特征.分析:先根据点(2,3),在反比例函数y=的图象上求出k的值,再根据k=xy的特点对各选项进行逐一判断.解答:解:∵反比例函数y=的图象经过点(2,3),∴k=2×3=6,A、∵(﹣6)×1=﹣6≠6,∴此点不在反比例函数图象上;B、∵1×6=6,∴此点在反比例函数图象上;C、∵2×(﹣3)=﹣6≠6,∴此点不在反比例函数图象上;D、∵3×(﹣2)=﹣6≠6,∴此点不在反比例函数图象上.故选B.点评:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数中k=xy的特点是解答此题的关键.11.(2014•扬州,第3题,3分)若反比例函数y=(k≠0)的图象经过点P(﹣2,3),则该函数的图象的点是()A.(3,﹣2)B.(1,﹣6)C.(﹣1,6)D.(﹣1,﹣6)考点:反比例函数图象上点的坐标特征分析:先把P(﹣2,3)代入反比例函数的解析式求出k=﹣6,再把所给点的横纵坐标相乘,结果不是﹣6的,该函数的图象就不经过此点.解答:解:∵反比例函数y=(k≠0)的图象经过点P(﹣2,3),∴k=﹣2×3=﹣6,∴只需把各点横纵坐标相乘,不是﹣6的,该函数的图象就不经过此点,四个选项中只有D不符合.故选D.点评:本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.二.填空题1.(2014•广西玉林市、防城港市,第18题3分)如图,OABC是平行四边形,对角线OB在轴正半轴上,位于第一象限的点A和第二象限的点C分别在双曲线y=和y=的一支上,分别过点A、C作x轴的垂线,垂足分别为M和N,则有以下的结论:①=;②阴影部分面积是(k1+k2);③当∠AOC=90°时,|k1|=|k2|;④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是①④(把所有正确的结论的序号都填上).考点:反比例函数综合题.专题:综合题.分析:作AE⊥y轴于E,CF⊥y轴于F,根据平行四边形的性质得S△AOB=S△COB,利用三角形面积公式得到AE=CF,则有OM=ON,再利用反比例函数k的几何意义和三角形面积公式得到S△AOM=|k1|=OM•AM,S△CON=|k2|=ON•CN,所以有=;由S△AOM=|k1|,S△CON=|k2|,得到S阴影部分=S△AOM+S△CON=(|k1|+|k2|)=(k1﹣k2);当∠AOC=90°,得到四边形OABC是矩形,由于不能确定OA与OC相等,则不能判断△AOM≌△CNO,所以不能判断AM=CN,则不能确定|k1|=|k2|;若OABC是菱形,根据菱形的性质得OA=OC,可判断Rt△AOM≌Rt△CNO,则AM=CN,所以|k1|=|k2|,即k1=﹣k2,根据反比例函数的性质得两双曲线既关于x轴对称,也关于y轴对称.解答:解:作AE⊥y轴于E,CF⊥y轴于F,如图,∵四边形OABC是平行四边形,∴S△AOB=S△COB,∴AE=CF,∴OM=ON,∵S△AOM=|k1|=OM•AM,S△CON=|k2|=ON•CN,∴=,所以①正确;∵S△AOM=|k1|,S△CON=|k2|,∴S阴影部分=S△AOM+S△CON=(|k1|+|k2|),而k1>0,k2<0,∴S阴影部分=(k1﹣k2),所以②错误;当∠AOC=90°,∴四边形OABC是矩形,∴不能确定OA与OC相等,而OM=
本文标题:2014年中考数学试题分类汇编---反比例函数
链接地址:https://www.777doc.com/doc-7551515 .html