您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2020年高考数学考纲解读与热点难点突破专题02函数的图象与性质
专题02函数的图象与性质【2020年高考考纲解读】(1)函数的概念和函数的基本性质是B级要求,是重要题型;(2)指数与对数的运算、指数函数与对数函数的图象和性质都是考查热点,要求都是B级;(3)幂函数是A级要求,不是热点题型,但要了解幂函数的概念以及简单幂函数的性质。【重点、难点剖析】1.函数及其图象(1)定义域、值域和对应关系是确定函数的三要素,是一个整体,研究函数问题时务必须“定义域优先”.(2)对于函数的图象要会作图、识图和用图,作函数图象有两种基本方法:一是描点法;二是图象变换法,其中图象变换有平移变换、伸缩变换和对称变换.2.函数的性质(1)单调性:单调性是函数在其定义域上的局部性质.证明函数的单调性时,规范步骤为取值、作差、变形、判断符号和下结论.复合函数的单调性遵循“同增异减”的原则;(2)奇偶性:奇偶性是函数在定义域上的整体性质.偶函数的图象关于y轴对称,在关于坐标原点对称的定义域区间上具有相反的单调性;奇函数的图象关于坐标原点对称,在关于坐标原点对称的定义域区间上具有相同的单调性;(3)周期性:周期性也是函数在定义域上的整体性质.若函数满足f(a+x)=f(x)(a不等于0),则其周期T=ka(k∈Z)的绝对值.3.求函数最值(值域)常用的方法(1)单调性法:适合于已知或能判断单调性的函数;(2)图象法:适合于已知或易作出图象的函数;(3)基本不等式法:特别适合于分式结构或两元的函数;(4)导数法:适合于可求导数的函数.4.指数函数、对数函数和幂函数的图象和性质(1)指数函数y=ax(a0且a≠1)与对数函数y=logax(a0且a≠1)的图象和性质,分0a1和a1两种情况,着重关注两函数图象中的两种情况的公共性质;(2)幂函数y=xα的图象和性质,分幂指数α0和α0两种情况.5.函数图象的应用函数的图象和解析式是函数关系的主要表现形式,它们的实质是相同的,在解题时经常要互相转化.在解决函数问题时,尤其是较为繁琐的(如分类讨论,求参数的取值范围等)问题时,要注意充分发挥图象的直观作用.【题型示例】题型一、函数的性质及其应用【例1】(2018年江苏卷)函数的定义域为________.【答案】[2,+∞)【解析】要使函数有意义,则,解得,即函数的定义域为.【变式探究】【2017北京,文5】已知函数1()3()3xxfx,则()fx(A)是偶函数,且在R上是增函数(B)是奇函数,且在R上是增函数(C)是偶函数,且在R上是减函数(D)是奇函数,且在R上是增函数【答案】B【举一反三】【2016年高考四川文数】已知函数()fx是定义在R上的周期为2的奇函数,当0<x<1时,()4xfx,则5()(1)2ff=.【答案】-2【解析】因为函数()fx是定义在R上的周期为2的奇函数,所以(1)(1),(1)(12)(1)fffff,所以(1)(1)ff,即(1)0f,125111()(2)()()422222ffff,所以5()(1)22ff.【举一反三】(1)(2015·重庆卷)函数f(x)=log2(x2+2x-3)的定义域是()A.[-3,1]B.(-3,1)C.(-∞,-3]∪[1,+∞)D.(-∞,-3)∪(1,+∞)(2)已知函数f(x)=lgx,x0,x+3,x≤0.若f(a)+f(1)=0,则实数a的值为()A.-3B.-1或3C.1D.-3或1(1)答案:D解析:要使函数有意义,只需x2+2x-30,即(x+3)(x-1)0,解得x-3或x1.故函数的定义域为(-∞,-3)∪(1,+∞).(2)答案:D解析:f(1)=lg1=0,所以f(a)=0.当a0时,则lga=0,a=1;当a≤0时,则a+3=0,a=-3.所以a=-3或1.【方法技巧】1.已知函数解析式,求解函数定义域的主要依据有:(1)分式中分母不为零;(2)偶次方根下的被开方数大于或等于零;(3)对数函数y=logax(a>0,a≠1)的真数x>0;(4)零次幂的底数不为零;(5)正切函数y=tanx中,x≠kπ+π2(k∈Z).如果f(x)是由几部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的自变量的集合.根据函数求定义域时:(1)若已知函数f(x)的定义域为[a,b],其复合函数f(g(x))的定义域由不等式a≤g(x)≤b求出;(2)若已知函数f(g(x))的定义域为[a,b],则f(x)的定义域为g(x)在x∈[a,b]时的值域.2.函数的值域是由函数的对应关系和函数的定义域所唯一确定的,具有相同对应关系的函数如果定义域不同,函数的值域也可能不相同.函数的值域是在函数的定义域上求出的,求解函数的值域时一定要与函数的定义域联系起来,从函数的对应关系和定义域的整体上处理函数的值域.题型2、函数的图象及其应用【例2】(2018年全国III卷)函数的图像大致为A.AB.BC.CD.D【答案】D【解析】当时,,排除A,B.,当时,,排除C,故正确答案选D.【变式探究】【2017课标1,文8】函数sin21cosxyx的部分图像大致为A.B.C.D.【答案】C【解析】由题意知,函数sin21cosxyx为奇函数,故排除B;当πx时,0y,故排除D;当1x时,sin201cos2y,故排除A.故选C.【举一反三】【2017课标3,文7】函数2sin1xyxx的部分图像大致为()ABD.CD【答案】D【解析】当1x时,111sin12sin12f,故排除A,C;当x时,1yx,故排除B,满足条件的只有D,故选D.【变式探究】【2016高考新课标1卷】函数22xyxe在2,2的图像大致为(A)(B)(C)(D)【答案】D【解析】函数f(x)=2x2–e|x|在[–2,2]上是偶函数,其图像关于y轴对称,因为22(2)8e,08e1f,所以排除A、B选项;当0,2x时,()=4exfxx有一零点,设为0x,当0(0,)xx时,()fx为减函数,当0(2)xx,时,()fx为增函数.故选D。【感悟提升】(1)根据函数的解析式判断函数的图象,要从定义域、值域、单调性、奇偶性等方面入手,结合给出的函数图象进行全面分析,有时也可结合特殊的函数值进行辅助推断,这是解决函数图象判断类试题的基本方法.(2)研究函数时,注意结合图象,在解方程和不等式等问题时,借助图象能起到十分快捷的作用.【举一反三】(1)(2015·四川卷)函数y=x33x-1的图象大致是()(2)函数y=f(x)的图象如图所示,在区间[a,b]上可找到n(n≥2)个不同的数x1,x2,…,xn,使得fx1x1=fx2x2=…=fxnxn,则n的取值范围是()A.{3,4}B.{2,3,4}C.{3,4,5}D.{2,3}(2)答案:B解析:fx1x1=fx1-0x1-0表示(x1,f(x1))与原点连线的斜率;fx1x1=fx2x2=…=fxnxn表示(x1,f(x1)),(x2,f(x2)),…,(xn,f(xn))与原点连线的斜率相等,而(x1,f(x1)),(x2,f(x2)),…,(xn,f(xn))在曲线图象上,故只需考虑经过原点的直线与曲线的交点个数有几种情况.如图所示,数形结合可得,有2,3,4三种情况,故选B.【方法技巧】1.关于判断函数图象的解题思路(1)确定定义域;(2)与解析式结合研究单调性、奇偶性;(3)观察特殊值.2.关于函数图象应用的解题思路主要有以下两点(1)方程f(x)=g(x)解的个数可以转化为函数y=f(x)与y=g(x)交点的个数;(2)不等式f(x)>g(x)(f(x)<g(x))解集为函数y=f(x)位于y=g(x)图象上方(下方)的那部分点的横坐标的取值范围.题型三、函数性质的综合应用例3、(2018年全国卷Ⅱ)若在是减函数,则的最大值是A.B.C.D.【答案】C【解析】因为,所以由得,因此,从而的最大值为。【变式探究】【2017天津,文6】已知奇函数()fx在R上是增函数.若0.8221(log),(log4.1),(2)5afbfcf,则,,abc的大小关系为(A)abc(B)bac(C)cba(D)cab【答案】C【解析】由题意:221loglog55aff,且:0.822log5log4.12,122,据此:0.822log5log4.12,结合函数的单调性有:0.822log5log4.12fff,即,abccba,本题选择C选项.【变式探究】【2016年高考北京文数】设函数33,()2,xxxafxxxa.①若0a,则()fx的最大值为______________;②若()fx无最大值,则实数a的取值范围是________.【答案】2,(,1).【感悟提升】(1)指数函数、对数函数、幂函数是高考的必考内容之一,重点考查图象、性质及其应用,同时考查分类讨论、等价转化等数学思想方法及其运算能力.(2)比较数式大小问题,往往利用函数图象或者函数的单调性.【举一反三】(2015·全国卷Ⅰ)若函数f(x)=xln(x+a+x2)为偶函数,则a=________.答案:1解析:∵f(x)为偶函数,∴f(-x)-f(x)=0恒成立,∴-xln(-x+a+x2)-xln(x+a+x2)=0恒成立,∴xlna=0恒成立,∴lna=0,即a=1.【变式探究】(1)已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x3+x2+1,则f(1)+g(1)=()A.-3B.-1C.1D.3(2)已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=12(|x-a2|+|x-2a2|-3a2).若∀x∈R,f(x-1)≤f(x),则实数a的取值范围为()A.-16,16B.-66,66C.-13,13D.-33,33【命题意图】(1)本题主要考查函数的解析式、奇偶性和求函数的值,意在考查考生的转化思想和方程思想.求解此题的关键是用“-x”代替“x”,得出f(x)+g(x)=-x3+x2+1.(2)本题主要考查奇函数的性质、分段函数以及函数的最值与恒成立问题,意在考查考生应用数形结合思想,综合运用所学知识分析问题、解决问题的能力.【答案】(1)C(2)B【解析】(1)用“-x”代替“x”,得f(-x)-g(-x)=(-x)3+(-x)2+1,化简得f(x)+g(x)=-x3+x2+1,令x=1,得f(1)+g(1)=1,故选C.(2)当x≥0时,f(x)=-x,0≤x≤a2,-a2,a2x≤2a2,x-3a2,x2a2,又f(x)为奇函数,可得f(x)的图象如图所示,由图象可得,当x≤2a2时,f(x)max=a2,当x2a2时,令x-3a2=a2,得x=4a2,又∀x∈R,f(x-1)≤f(x),可知4a2-(-2a2)≤1⇒a∈-66,66,故选B.【方法技巧】函数性质的综合应用主要是指利用函数的单调性、奇偶性、周期性等性质来相互转化解决相对综合的问题.主要的解析:奇偶性主要转化方向是f(-x)与f(x)的关系,图象对称问题;单调性主要转化方向是最值、方程与不等式的解;周期性主要转化方向是利用f(x)=f(x+a)把区间外的函数转化到区间内,并结合单调性、奇偶性解决相关问题.
本文标题:2020年高考数学考纲解读与热点难点突破专题02函数的图象与性质
链接地址:https://www.777doc.com/doc-7369672 .html