您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > (完整word版)浙教版初三数学知识点整理
1第一章反比例函数知识点:1.定义:形如y=xk(k为常数,k≠0)的函数称为反比例函数。其中x是自变量,y是函数,自变量x的取值是不等于0的一切实数。说明:1)y的取值范围是一切非零的实数。2)反比例函数可以理解为两个变量的乘积是一个不为0的常数,因此其解析式也可以写成xy=k;1kxy;xky1(k为常数,k≠0)3)反比例函数y=xk(k为常数,k≠0)的左边是函数,右边是分母为自变量x的分式,也就是说,分母不能是多项式,只能是x的一次单项式,如xy1,xy213等都是反比例函数,但21xy就不是关于x的反比例函数。2.用待定系数法求反比例函数的解析式由于反比例函数y=xk只有一个待定系数,因此只需要知道一组对应值,就可以求出k的值,从而确定其解析式。3.反比例函数的画法:1)列表;2)描点;3)连线注:(1)列表取值时,x≠0,因为x=0函数无意义,为了使描出的点具有代表性,可以“0”为中心,向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求y值(2)由于函数图象的特征还不清楚,所以要尽量多取一些数值,多描一些点,这样便于连线,使画出的图象更精确2(3)连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线(4)由于x≠0,k≠0,所以y≠0,函数图象永远不会与x轴、y轴相交,只是无限靠近两坐标轴4.图像:反比例函数的图像属于双曲线。反比例函数的图象既是轴对称图形又是中心对称图形。有两条对称轴:直线y=x和y=-x;对称中心是:原点5.性质:反比例函数y=xk(k为常数,k≠0)k的取值k<0k>0图像性质a)x的取值范围是x≠0;y的取值范围是y≠0;b)函数的图像两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。a)x的取值范围是x≠0;y的取值范围是y≠0;b)函数的图像两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小。说明:1)反比例函数的增减性不连续,在讨论函数增减问题时,必须有“在每一个象限内”这一条件。2)反比例函数图像的两个分只可以无限地接近x轴、y轴,但与x轴、y轴没有交点。3)越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.4)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.36.反比例函数y=xk(k≠0)中的比例系数k的几何意义表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积。如图,过双曲线y=xk(k≠0)上的任意一点P(x,y)做x轴、y轴的垂线PA、PB,所得矩形OBPA的面积S=PA·PB=∣xy∣=∣k∣。推出:过双曲线上的任意一点做坐标轴的垂线,连接原点,所得三角形的面积为2k7.经典例题考察:1)反比例关系与反比例函数的区别和联系:如果xy=k(k≠0),那么x与y这两个量成反比例的关系,这里的x、y可以表示单独的一个字母,也可以代表多项式或单项式。例如y-1与x+1成反比例,则11xky;若y与x2成反比例,则2xky成反比例关系,x和y不一定是反比例函数;但反比例函数xky(k≠0)必成反比例关系。2)坐标系中的求不规则图形的面积3)反比例函数与一次函数、正比例函数的综合题8反比例函数与一次函数的联系.(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.4(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.8.实际问题与反比例函数的应用1)步骤:分析问题,列解析式建立反比例函数模型→利用反比例函数解决相关问题,建立反比例函数模型是解决问题的关键。思路:题目中已明确两变量的函数关系,常利用待定系数法求出函数解析式。题目中不能确定变量间的函数关系,找出等量关系,将变量联系起来就能得到函数关系式,并解决问题。2)反比例函数的应用(1)反比例函数在几何问题中的应用。求实际问题中的面积(2)反比例函数在其他学科中的应用,a)物理学中,电压一定时,电阻R与电流强度I成反比例函数,RUIb)当在一个可以改变体积的容器中装入一定质量的气体时,当改变容器的体积时,气体的密度也会随之改变,密度(单位:kg/m3)是体积v的反比例函数,解析式可以表达为vkc)收音机刻度盘的波长l与频率f关系式:fkld)压力F一定时,压强P与受力面积S成反比例关系,即SFPe)当汽车输出功率P一定时,汽车行驶速度v与汽车所受的负载即阻力F成反比例关系,FPv(3)反比例函数在日常生活中的应用:路程问题、工程问题等。注:实际问题中一定要注意自变量x的取值范围。5重点:反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用.难点:(1)反比例函数及其图象的性质的理解和掌握.反比例函数的图像是双曲线,在利用它的增、减性解题时,必须注意“在每一象限内”的条件。(2)反比例函数的应用:从实际问题中抽象出反比例函数的模型。用待定系数法求出反比例函数的解析式,再用反比例函数的规律解决实际问题。考点:与反比例函数有关的问题,几乎在历届中考中都可以找到。其主要命题点为:(1)反比例函数的定义;(2)反比例函数的图像及性质;(3)求反比例函数的解析式;(4)反比例函数与实际问题的应用;(5)反比例函数与一次函数的综合。题型主要有选择题、填空题、还有解答题。二次函数知识点:1.定义:一般地,如果cbacbxaxy,,(2是常数,)0a,那么y叫做x的二次函数.2.二次函数2axy的性质(1)抛物线2axy)(0a的顶点是坐标原点,对称轴是y轴.(2)函数2axy的图像与a的符号关系.①0a时抛物线开口向上顶点为其最低点;②当0a时抛物线开口向下顶点为其最高点3.二次函数cbxaxy2的图像是对称轴平行于(包括重合)y轴的抛物线.4.二次函数cbxaxy2用配方法可化成:khxay2的形式,其中abackabh4422,.5.二次函数由特殊到一般,可分为以下几种形式:①2axy;②kaxy2;③2hxay;④khxay2;⑤cbxaxy2.66.抛物线的三要素:开口方向、对称轴、顶点.①a决定抛物线的开口方向:当0a时,开口向上;当0a时,开口向下;a相等,抛物线的开口大小、形状相同.②平行于y轴(或重合)的直线记作hx.特别地,y轴记作直线0x.7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.8.求抛物线的顶点、对称轴的方法(1)公式法:abacabxacbxaxy442222,∴顶点是),(abacab4422,对称轴是直线abx2.(2)配方法:运用配方法将抛物线的解析式化为khxay2的形式,得到顶点为(h,k),对称轴是hx.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.★用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失★9.抛物线cbxaxy2中,cba,,的作用(1)a决定开口方向及开口大小,这与2axy中的a完全一样.(2)b和a共同决定抛物线对称轴的位置.由于抛物线cbxaxy2的对称轴是直线abx2,故:①0b时,对称轴为y轴;②0ab(即a、b同号)时,对称轴在y轴左侧;③0ab(即a、b异号)时,对称轴在y轴右侧.(3)c的大小决定抛物线cbxaxy2与y轴交点的位置.当0x时,cy,∴抛物线cbxaxy2与y轴有且只有一个交点(0,c):①0c,抛物线经过原点;②0c,与y轴交于正半轴;③0c,与y轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y轴右侧,则0ab.10.几种特殊的二次函数的图像特征如下:7函数解析式开口方向对称轴顶点坐标2axy当0a时开口向上当0a时开口向下0x(y轴)(0,0)kaxy20x(y轴)(0,k)2hxayhx(h,0)khxay2hx(h,k)cbxaxy2abx2(abacab4422,)11.用待定系数法求二次函数的解析式(1)一般式:cbxaxy2.已知图像上三点或三对x、y的值,通常选择一般式.(2)顶点式:khxay2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x轴的交点坐标1x、2x,通常选用交点式:21xxxxay.12.直线与抛物线的交点(1)y轴与抛物线cbxaxy2得交点为(c,0)(2)与y轴平行的直线hx与抛物线cbxaxy2有且只有一个交点(h,cbhah2).(3)抛物线与x轴的交点二次函数cbxaxy2的图像与x轴的两个交点的横坐标1x、2x,是对应一元二次方程02cbxax的两个实数根.抛物线与x轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点0抛物线与x轴相交;②有一个交点(顶点在x轴上)0抛物线与x轴相切;③没有交点0抛物线与x轴相离.(4)平行于x轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k,则横坐标是kcbxax2的两个实数根.(5)一次函数0knkxy的图像l与二次函数02acbxaxy的图像G的交点,由方程组cbxaxynkxy2的解的数目来确定:①方程组有两组不同的解时l与G有两个交点;②方程组只有一组解时l与G只有一个交点;③方程组无解时l与G没有交点.8(6)抛物线与x轴两交点之间的距离:若抛物线cbxaxy2与x轴两交点为0021,,,xBxA,由于1x、2x是方程02cbxax的两个根,故acxxabxx2121,aaacbacabxxxxxxxxAB44422212212212113.二次函数与一元二次方程的关系:(1)一元二次方程cbxaxy2就是二次函数cbxaxy2当函数y的值为0时的情况.(2)二次函数cbxaxy2的图象与x轴的交点有三种情况:有两个交点、有一个交点、没有交点;当二次函数cbxaxy2的图象与x轴有交点时,交点的横坐标就是当0y时自变量x的值,即一元二次方程02cbxax的根.(3)当二次函数cbxaxy2的图象与x轴有两个交点时,则一元二次方程cbxaxy2有两个不相等的实数根;当二次函数cbxaxy2的图象与x轴有一个交点时,则一元二次方程02cbxax有两个相等的实数根;当二次函数cbxaxy2的图象与x轴没有交点时,则一元二次方程02cbxax没有实数根14、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1.关于x轴对称2yaxbxc关于x轴对称后,得到的解析式是2yaxbxc;2yaxhk关于x轴对称后,得到的解析式是2yaxhk;2.关于y轴对称2yaxbxc关于y轴对称后,得到的解析式是2yaxbxc;2yaxhk关于y轴对称后,得到的解析式是2yaxhk;3.关于原点对称2yaxbxc关于原点对称后,得到的解析式是2yaxbxc;2yaxhk关于原点对称后,得到的解析式是2yaxhk;94.关于顶点对称(即:抛物线绕顶点旋转180°)2yaxbxc
三七文档所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
本文标题:(完整word版)浙教版初三数学知识点整理
链接地址:https://www.777doc.com/doc-7302130 .html