您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 管理学资料 > 平行线之间的动点问题(含答案)
1平行线之间的动点问题平行线的判定与性质1.判定方法:(1)同角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行;(4)在同一平面内,垂直于同一直线的两直线平行.2.性质:(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)两直线平行,同旁内角互补.3.相同点:平行线的判定和性质研究的都是两直线被第三条直线所截的图形,可以说这个图形是它们共同的、必备的前提条件。4.区别:平行线的性质和平行线的判定中的条件和结论恰好相反:平行线的“判定”,是为了判断两条直线是否平行,就要先研究同位角、内错角、同旁内角的数量关系,当知道了“同位角相等”或“内错角相等”或“同旁内角互补”时,就可以判定这两条直线平行。它们是由“数”到“形”的判断。平行线的“性质”,是已经知道两条直线平行时,就可以推出同位角相等,内错角相等,同旁内角互补的数量关系,即“平行线”这种图形具有的性质。它们是由“形”到“数”的说理。1、(1)光线从空气中射入水中会产生折射现象,同时光线从水中射入空气中也会产生折射现象,如图1,光线a从空气中射入水中,再从水中射入空气中,形成光线b,根据光学知识有∠1=∠2,∠3=∠4,请判断光线a与光线b是否平行,并说明理由.(2)光线照射到镜面会产生反射现象,由光学知识,入射光线与镜面的夹角与反射光线与镜面的夹角相等,如图2有一口井,已知入射光线a与水平线OC的夹角为42°,问如何放置平面镜MN,可使反射光线b正好垂直照射到井底?(即求MN与水平线的夹角)(3)如图3,直线EF上有两点A、C,分别引两条射线AB、CD.∠BAF=110°,∠DCF=60°,射线AB、CD分别绕A点,C点以1度/秒和3度/秒的速度同时顺时针转动,设时间为t,在射线CD转动一周的时间内,是否存在某时刻,使得CD与AB平行?若存在,求出所有满足条件的时间t.解:(1)平行.理由如下:如图,∵∠3=∠4,∴∠5=∠6,∵∠1=∠2,2∴∠1+∠5=∠2+∠6,∴a∥b;(2)∵入射光线与镜面的夹角与反射光线与镜面的夹角相等,∴∠1=∠2,∵入射光线a与水平线OC的夹角为42°,b垂直照射到井底,∴∠1+∠2=180°-42°-90°=48°,∴∠1=×48°=24°,∴MN与水平线的夹角为:24°+42°=66°;(3)存在.如图①,AB与CD在EF的两侧时,∵∠BAF=110°,∠DCF=60°,∴∠ACD=180°-60°-3t=120°-3t,∠BAC=110°-t,要使AB∥CD,则∠ACD=∠BAF,即120°-3t=110°-t,解得t=5;此时(180°-60°)÷3=40,∴0<t<40,②CD旋转到与AB都在EF的右侧时,∵∠BAF=110°,∠DCF=60°,∴∠DCF=360°-3t-60°=300°-3t,∠BAC=110°-t,要使AB∥CD,则∠DCF=∠BAC,即300°-3t=110°-t,解得t=95°,此时(360°-60°)÷3=100,∴40<t<100,③CD旋转到与AB都在EF的左侧时,∵∠BAF=110°,∠DCF=60°,∴∠DCF=3t-(180°-60°+180°)=3t-300°,∠BAC=t-110°,要使AB∥CD,则∠DCF=∠BAC,即3t-300°=t-110°,解得t=95°,此时t>110,∵95<110,∴此情况不存在.3综上所述,t为5秒或95秒时,CD与AB平行.解析:(1)根据等角的补角相等求出∠3与∠4的补角相等,再根据内错角相等,两直线平行即可判定a∥b;(2)根据入射光线与镜面的夹角与反射光线与镜面的夹角相等可得∠1=∠2,然后根据平角等于180°求出∠1的度数,再加上42°即可得解;(3)分①AB与CD在EF的两侧,分别表示出∠ACD与∠BAC,然后根据两直线平行,内错角相等列式计算即可得解;②CD旋转到与AB都在EF的右侧,分别表示出∠DCF与∠BAC,然后根据两直线平行,同位角相等列式计算即可得解;③CD旋转到与AB都在EF的左侧,分别表示出∠DCF与∠BAC,然后根据两直线平行,同位角相等列式计算即可得解.2、如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°(1)求证:AB∥CD;(2)如图2,由三角形内角和可知∠E=90°,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD否存在确定的数量关系?并证明;(3)如图3,P为线段AC上一定点,点Q为直线CD上一动点,①当点Q在射线CD上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?猜想结论并说明理由.②当点Q在射线CD的反向延长线上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系?猜4想结论,不需说明理由.证明:(1)∵CE平分∠ACD,AE平分∠BAC,∴∠BAC=2∠EAC,∠ACD=2∠ACE,∵∠EAC+∠ACE=90°,∴∠BAC+∠ACD=180,∴AB∥CD;(2)∠BAE+∠MCD=90°;过E作EF∥AB,∵AB∥CD,∴EF∥∥AB∥CD,∴∠BAE=∠AEF,∠FEC=∠DCE,∵∠E=90°,∴∠BAE+∠ECD=90°,∵∠MCE=∠ECD,∴∠BAE+∠MCD=90°;(3)如图3:∵AB∥CD,∴∠BAC+∠ACD=180°,∵∠QPC+∠PQC+∠PCQ=180°,∴∠BAC=∠PQC+∠QPC;如图4:∵AB∥CD,∴∠BAC=∠ACQ∵∠PQC+∠PCQ+∠ACQ=180°,∴∠PQC+∠QPC+∠BAC=180°.5解析:(1)根据角平分线的性质可得∠BAC=2∠EAC,∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可得∠BAC+∠ACD=180,进而得到AB∥CD;(2)过E作EF∥AB,证明EF∥∥AB∥CD,可得∠BAE=∠AEF,∠FEC=∠DCE,再由∠E=90°,可得∠BAE+∠ECD=90°,进而得到∠BAE+∠MCD=90°;(3)根据平行线的性质结合三角形内角和定理可得∠CPQ+∠CQP与∠BAC数量关系3、(1)如图1,AC平分∠DAB,∠1=∠2,试说明AB与CD的位置关系,并予以证明;(2)如图2,在(1)的条件下,AB的下方两点E,F满足∠EBF=2∠ABF,CF平分∠DCE,若∠F的2倍与∠E的补角的和为190°,求∠ABE的度数;(3)如图3,在前面的条件下,若P是BE上一点,G是CD上任一点,PQ平分∠BPG,PQ∥GN,GM平分∠DGP,下列结论:①∠DGP-∠MGN的值不变;②∠MGN的度数不变.可以证明,只有一个是正确的,请你作出正确的选择并值.(1)答:AB∥CD.证明:∵∠1=∠2,∴AB∥CD;(2)解:设∠ABF=x,则∠EBF=2x,∴∠ABE=∠ABF+∠EBF=x+2x=3x,根据三角形的内角和定理可得,∠E+∠EBF=∠F+∠ECF,根据三角形的外角性质,∠1=∠E+∠ABE=∠E+3x,∵AB∥CD,∴∠1=∠DCE,∵CF平分∠DCE,∴∠ECF=∠DCE=∠1=(∠E+3x),∴∠E+2x=∠F+(∠E+3x),整理得,2∠F-∠E=x①,6∵∠F的2倍与∠E的补角的和为190°,∴2∠F+180°-∠E=190°②,①代入②得,x+180°=190°,∴x=10°,∴∠ABE=3x=30°;(3)解:如图,根据三角形的外角性质,∠1=∠BPG+∠B,∵PQ平分∠BPG,GM平分∠DGP,∴∠GPQ=∠BPG,∠MGP=∠DGP,∵AB∥CD,∴∠1=∠DGP,∴∠MGP=(∠BPG+∠B),∵PQ∥GN,∴∠NGP=∠GPQ=∠BPG,∴∠MGN=∠MGP-∠NGP=(∠BPG+∠B)-∠BPG=∠B,根据前面的条件,∠B=30°,∴∠MGN=×30°=15°,∴①∠DGP-∠MGN的值随∠DGP的变化而变化;②∠MGN的度数为15°不变.解解析:(1)根据内错角相等,两直线平行证明即可;(2)设∠ABF=x,则∠ABE=3x,根据三角形内角和定理整理得到∠E+∠EBF=∠F+∠ECF,再根据两直线平行,内错角相等以及角平分线的定义表示出∠ECF=∠1,然后整理得到∠E、∠F的关系式,再根据∠F与∠E的补角的关系列出等式,然后整理即可求出x,从而得解;7(3)根据三角形的一个外角等于与它不相邻的两个内角的和可得∠1=∠BPG+∠B,再根据平行线的性质以及角平分线的定义表示出∠MGP、∠DPQ,根据两直线平行,内错角相等可得∠NGP=∠GPQ,然后列式表示出∠MGN=∠B,从而判定②正确.4、长方形OABC,O为平面直角坐标系的原点,OA=5,OC=3,点B在第三象限.(1)求点B的坐标;(2)如图1,若过点B的直线BP与长方形OABC的边交于点P,且将长方形OABC的面积分为1:4两部分,求点P的坐标;(3)如图2,M为x轴负半轴上一点,且∠CBM=∠CMB,N是x轴正半轴上一动点,∠MCN的平分线CD交BM的延长线于点D,在点N运动的过程中,的值是否变化?若不变,求出其值;若变化,请说明理由.解:(1)∵四边形OABC为长方形,OA=5,OB=3,且点B在第三象限,∴B(-5,-3).(2)若过点B的直线BP与边OA交于点P,依题意可知:×AB×AP=×OA×OC,即×3×AP=×5×3,∴AP=2∵OA=5,∴OP=3,∴P(-3,0),若过点B的直线BP与边OC交于点P,依题意可知:×BC×PC=×OA×OC,即×5×PC=×5×3,∴PC=8∵OC=3,∴OP=,∴P(0,-).综上所述,点P的坐标为(-3,0h或(0,-).(3)延长BC至点F,∵四边形OABC为长方形,∴OA∥BC.∴∠CBM=∠AMB,∠AMC=∠MCF.∵∠CBM=∠CMB,∴∠MCF=2∠CMB.过点M作ME∥CD交BC于点E,∴∠EMC=∠MCD.又∵CD平分∠MCN,∴∠NCM=2∠EMC.∴∠D=∠BME=∠CMB-∠EMC,∠CN7=∠NCF=∠MCF-∠NCM=2∠BMC-2∠DCM=2∠D,∴=.解析:(1)根据第三象可点的坐标性质得出答案;(2)利用长方形OABC的面积分为1:4两部分,得出等式求出AP的长,即可得出P点坐标,再求出PC的长,即可得出OP的长,进而得出答案;(3)标先求出∠MCF=2∠CMB,即可得出∠CNM=部NCF=∠MCF-∠NCM=2∠BMC-2∠DCM,得出答案.9解:(1)∵四边形OABC为长方形,OA=5,OB=3,且点B在第三象限,∴B(-5,-3).(2)若过点B的直线BP与边OA交于点P,依题意可知:×AB×AP=×OA×OC,即×3×AP=×5×3,∴AP=2∵OA=5,∴OP=3,∴P(-3,0),若过点B的直线BP与边OC交于点P,依题意可知:×BC×PC=×OA×OC,即×5×PC=×5×3,∴PC=∵OC=3,∴OP=,∴P(0,-).综上所述,点P的坐标为(-3,0h或(0,-).(3)延长BC至点F,∵四边形OABC为长方形,∴OA∥BC.∴∠CBM=∠AMB,∠AMC=∠MCF.∵∠CBM=∠CMB,∴∠MCF=2∠CMB.过点M作ME∥CD交BC于点E,∴∠EMC=∠MCD.又∵CD平分∠MCN,∴∠NCM=2∠EMC.∴∠D=∠BME=∠CMB-∠EMC,10∠CN7=∠NCF=∠MCF-∠NCM=2∠BMC-2∠DCM=2∠D,∴=.解析:(1)根据第三象可点的坐标性质得出答案;(2)利用长方形OABC的面积分为1:4两部分,得出等式求出AP的长,即可得出P点坐标,再求出PC的长,即可得出OP的长,进而得出答案;(3)标先求出∠MCF=2∠CMB,即可得出∠CNM=部NCF=∠MCF-∠NCM=2∠BMC-2∠DCM,得出答案.5、如图,已知直线AB∥CD,∠A=∠C=100°,E、F在CD上,且满足∠DBF=∠ABD,BE平分∠CBF.(1)直线AD与BC有何位置关系?请说明理由.(2)求∠DBE的度数.(3)若平行移动AD,在平行
三七文档所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
本文标题:平行线之间的动点问题(含答案)
链接地址:https://www.777doc.com/doc-7210642 .html