您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 管理学资料 > 2019-2020学年湖南省长沙市天心区长郡中学八年级(上)期中数学试卷
2019-2020学年湖南省长沙市天心区长郡中学八年级(上)期中数学试卷一、选择题(共12小题,每小题3分,共36分)1.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.(3分)等式(x+4)0=1成立的条件是()A.x为有理数B.x≠0C.x≠4D.x≠﹣43.(3分)下列运算中,正确的是()A.x6÷x2=x3B.(﹣3x)2=6x2C.3x3﹣2x2=xD.(x3)2•x=x74.(3分)若(2a+3b)()=4a2﹣9b2,则括号内应填的代数式是()A.﹣2a﹣3bB.2a+3bC.2a﹣3bD.3b﹣2a5.(3分)如图,等边三角形ABC中,AD⊥BC,垂足为D,点E在线段AD上,∠EBC=45°,则∠ACE等于()A.15°B.30°C.45°D.60°6.(3分)下列各式中,能用完全平方公式计算的是()A.(a﹣b)(﹣b﹣a)B.(﹣n2﹣m2)(m2+n2)C.D.(2x﹣3y)(2x+3y)7.(3分)下列说法错误的是()A.关于某条直线对称的两个三角形一定全等B.轴对称图形至少有一条对称轴C.全等三角形一定能关于某条直线对称D.角是轴对称的图形8.(3分)如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是()A.8B.9C.10D.119.(3分)如果x2﹣(m+1)x+1是完全平方式,则m的值为()A.﹣1B.1C.1或﹣1D.1或﹣310.(3分)下列各式成立的是()A.B.(﹣a﹣b)2=(a+b)2C.(a﹣b)2=a2﹣b2D.(a+b)2﹣(a﹣b)2=2ab11.(3分)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=40°,则∠CDE的度数为()A.50°B.40°C.60°D.80°12.(3分)如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为()A.6B.8C.10D.12二、填空题(本大题共4个小题,每小题3分,共16分)13.(3分)分解因式:a2﹣9=.14.(3分)若(x+p)与(x+5)的乘积中不含x的一次项,则p=.15.(3分)如图,AB=AC=8cm,DB=DC,若∠ABC=60°,则BE=cm.16.(3分)已知:(a﹣b)2=4,ab=,则(a+b)2=.17.(3分)如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,交BC于点D,若CD=1,则BD=.18.(3分)如图,在△ABC中,AB=AC,点E在CA延长线上,EP⊥BC于点P,交AB于点F,若AF=2,BF=3,则CE的长度为.三、解答题(共66分)19.(8分)计算:(1)﹣12x2y3÷(﹣3xy2)•(﹣xy)(2)3a2(a3b2﹣2a)﹣4a(﹣a2b)220.(8分)因式分解:(1)x2﹣4x﹣12(2)a3﹣4a2+4a21.(8分)运用乘法公式计算:(1)98×102(2)(2x﹣3y)2+(x﹣2y)(x+2y)22.(6分)先化简,再求值(x﹣1)(x﹣2)﹣(x+1)2,其中x=.23.(6分)如图,在平面直角坐标系xOy中,A(1,2),B(3,1),C(﹣2,﹣1).(1)如图中作出△ABC关于y轴的对称图形△A1B1C1;(2)写出点A1,B1,C1的坐标(直接写答案).A1B1C1;(3)求△ABC的面积.24.(6分)如图,在△ABC中,AB=AC,CD是∠ACB的平分线,DE∥BC,交AC于点E.(1)求证:DE=CE.(2)若∠CDE=35°,求∠A的度数.25.(8分)如图,点P,M,N分别在等边△ABC的各边上,且MP⊥AB于点P,MN⊥BC于点M,PN⊥AC于点N.(1)求证:△PMN是等边三角形;(2)若AB=18cm,求CM的长.26.(8分)如图,△ABC中,AB=BC=AC=24cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.(1)点M,N运动几秒后,M、N两点重合?(2)点M、N运动几秒后,可得到等边三角形△AMN?(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.27.(8分)如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠EDC=°,∠DEC=°;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.2019-2020学年湖南省长沙市天心区长郡中学八年级(上)期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,共36分)1.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.2.【解答】解:∵(x+4)0=1成立,∴x+4≠0,∴x≠﹣4.故选:D.3.【解答】解:A、错误,应为x6÷x2=x6﹣2=x4;B、错误,应为(﹣3x)2=9x2;C、错误,3x3与2x2不是同类项,不能合并;D、(x3)2•x=x6•x=x7,正确.故选:D.4.【解答】解:∵4a2﹣9b2=(2a+3b)(2a﹣3b),∴(2a+3b)(2a﹣3b)=4a2﹣9b2,故选:C.5.【解答】解:∵等边三角形ABC中,AD⊥BC,∴BD=CD,即:AD是BC的垂直平分线,∵点E在AD上,∴BE=CE,∴∠EBC=∠ECB,∵∠EBC=45°,∴∠ECB=45°,∵△ABC是等边三角形,∴∠ACB=60°,∴∠ACE=∠ACB﹣∠ECB=15°,故选:A.6.【解答】解:A、原式=b2﹣a2,本选项不合题意;B、原式=﹣(m2+n2)2,本选项符合题意;C、原式=q2﹣p2,本选项不合题意;D、原式=4x2﹣9y2,本选项不合题意,故选:B.7.【解答】解:A、关于某条直线对称的两个三角形一定全等,正确;B、轴对称图形至少有一条对称轴,正确;C、两全等三角形不一定关于某条直线对称,错误;D、角是轴对称的图形,正确.故选:C.8.【解答】解:∵ED是AB的垂直平分线,∴AD=BD,∵△BDC的周长=DB+BC+CD,∴△BDC的周长=AD+BC+CD=AC+BC=6+4=10.故选:C.9.【解答】解:∵x2﹣(m+1)x+1是完全平方式,∴﹣(m+1)x=±2×1•x,解得:m=1或m=﹣3.故选:D.10.【解答】解:A、,错误;B、(﹣a﹣b)2=(a+b)2,正确;C、(a﹣b)2=a2﹣2ab+b2,错误;D、(a+b)2﹣(a﹣b)2=4ab,错误;故选:B.11.【解答】解:∵AC=CD=BD=BE,∠A=40°,∴∠A=∠CDA=40°,∠B=∠DCB,∠BDE=∠BED,∵∠B+∠DCB=∠CDA=40°,∴∠B=20°,∵∠B+∠EDB+∠DEB=180°,∴∠BDE=∠BED=(180°﹣20°)=80°,∴∠CDE=180°﹣∠CDA﹣∠EDB=180°﹣40°﹣80°=60°,故选:C.12.【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=16,解得AD=8,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=10.故选:C.二、填空题(本大题共4个小题,每小题3分,共16分)13.【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).14.【解答】解:(x+p)(x+5)=x2+5x+px+5p=x2+(5+p)x+5p,∵乘积中不含x的一次项,∴5+p=0,解得p=﹣5,故答案为:﹣5.15.【解答】解:∵AB=AC,∠ABC=60°,∴△ABC是等边三角形,A在BC的垂直平分线上,∴BC=AB=8cm,∵DB=DC,∴点D在BC的垂直平分线上,∴AD垂直平分BC,∴BE=BC=4cm.故答案为:4.16.【解答】解:∵(a﹣b)2=4,ab=,∴(a﹣b)2=a2+b2﹣2ab,=a2+b2﹣1=4,∴a2+b2=5,∴(a+b)2=a2+b2+2ab=5+1=6.17.【解答】解:∵∠C=90°,∠B=30°,∴∠CAB=60°,AD平分∠CAB,∴∠BAD=30°,∴BD=AD=2CD=2,故答案为2.18.【解答】证明:在△ABC中,∵AB=AC,∴∠B=∠C,∵EP⊥BC,∴∠C+∠E=90°,∠B+∠BFP=90°,∴∠E=∠BFP,又∵∠BFP=∠AFE,∴∠E=∠AFE,∴AF=AE,∴△AEF是等腰三角形.又∵AF=2,BF=3,∴CA=AB=5,AE=2,∴CE=7.三、解答题(共66分)19.【解答】解:(1)原式=4x2y•(﹣xy)=﹣x2y2;(2)原式=3a5b2﹣6a3﹣4a5b2=﹣a5b2﹣6a3.20.【解答】解:(1)x2﹣4x﹣12=(x﹣6)(x+2);(2)a3﹣4a2+4a=a(a2﹣4a+4)=a(a﹣2)2.21.【解答】解:(1)98×102=(100﹣2)(100+2)=1002﹣22=9996;(2)(2x﹣3y)2+(x﹣2y)(x+2y)=4x2﹣12xy+9y2+x2﹣4y2=5x2﹣12xy+5y2.22.【解答】解:(x﹣1)(x﹣2)﹣(x+1)2,=x2﹣2x﹣x+2﹣x2﹣2x﹣1=﹣5x+1当x=时,原式=﹣5×+1=﹣.23.【解答】解:(1)如图所示:(2)A1(﹣1,2),B1(﹣3,1),C1(2,﹣1).(3)△ABC的面积=3×5﹣×3×3﹣×2×1﹣×5×2=.24.【解答】(1)证明:∵CD是∠ACB的平分线,∴∠BCD=∠ECD.∵DE∥BC,∴∠EDC=∠BCD,∴∠EDC=∠ECD,∴DE=CE.(2)解:∵∠ECD=∠EDC=35°,∴∠ACB=2∠ECD=70°.∵AB=AC,∴∠ABC=∠ACB=70°,∴∠A=180°﹣70°﹣70°=40°.25.【解答】(1)证明:∵△ABC是正三角形,∴∠A=∠B=∠C,∵MP⊥AB,MN⊥BC,PN⊥AC,∴∠MPB=∠NMC=∠PNA=90°,∴∠PMB=∠MNC=∠APN,∴∠NPM=∠PMN=∠MNP,∴△PMN是等边三角形;(2)解:∵△PMN是等边三角形,∴PM=MN=NP,在△PBM、△MCN和△NAP中,,∴△PBM≌△MCN≌△NAP(AAS),∴PA=BM=CN,PB=CM=AN,∴BM+PB=AB=18cm,∵△ABC是正三角形,∴∠A=∠B=∠C=60°,∴2PB=BM,∴2PB+PB=18cm,∴PB=6cm,∴CM=6cm.26.【解答】解:(1)设运动t秒,M、N两点重合,根据题意得:2t﹣t=24∴t=24答:点M,N运动24秒后,M、N两点重合(2)设点M、N运动x秒后,可得到等边三角形△AMN∵△AMN是等边三角形∴AN=AM,∴x=24﹣2x解得:x=8∴点M、N运动8秒后,可得到等边三角形△AMN.(3)设M、N运动y秒后,得到以MN为底边的等腰三角形AMN.∵△ABC是等边三角形∴AB=AC,∠C=∠B=60°∵△AMN是等腰三角形∴AM=AN∴∠AMN=∠ANM,且∠B=∠C,AC=AB,∴△ACN≌△ABM(AAS)∴CN=BM∴CM=BN∴y﹣24=72﹣2y∴y=32答:当M、N运动32
本文标题:2019-2020学年湖南省长沙市天心区长郡中学八年级(上)期中数学试卷
链接地址:https://www.777doc.com/doc-7165887 .html