您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 信息化管理 > 地热勘查主要技术方法及要求
地热勘查主要技术方法及要求第一节区域地质资料的搜集和分析地热资源的埋藏分布大多与区域构造断裂,基底埋藏分布,深部地层岩性等密切相关,广泛搜集区域地质构造资料及已有石油,煤炭的勘查资料,是开展地热勘查的必备工作,进而确定地热勘查区所处地质构造部位,基底埋藏特征、地层岩性特征、地热水储存和运移特征等,为地热勘查提供基础地质条件。收集的资料主要包括以下几方面1、1:20万—1:5万区域地质测量成果。2、1:20万—1:5万重力、航磁、电法物探资料。3、石油勘查成果资料,主要有地震勘查时间剖面及其解释推断剖面平面成果图件,勘探孔资料(钻孔柱状图、测井资料、参数井获取的各种参数)。4、煤炭勘查资料,主要有地震勘查、钻探、测井、测温等成果。自治区在各盆地中大多进行了煤炭勘查,资料比较丰富。第二节航卫片解译航卫片的解译可以判断地热勘查区地质构造基本轮廊及隐伏构造;可以显示泉群和地热溢出带位置,地面水热蚀变带的分布,热红外解译可判断地表异常分布等。在勘查面积较大,已有地质资料较少地区,可提供较多的地热地质信息。该方法在主要受断裂构造控制呈带状分布的地热田勘查中更加有效适用,应采用不同时段的高分辨率的数据源(如我国已启动高分辨率对地观测系统资源三号卫星数据)进行解译。第三节地热地质调查一、地热地质调查的工作比例确定地热地质调查比例尺调查阶段一般为1:20万—1:5万,预可行性勘查阶段一般为1:5万,可行性与开采勘查阶段一般为1:5—1:1万。二、不同类型地热田调查重点1、主要受断裂控制的带状地热田,着重调查断裂带的位置、类型、规模、产状、断距、力学性质、活动性及断裂带附近节理裂隙发育程度、断裂带充填物、胶结情况,测定断裂带附近的地温及水化学成分,调查侵入岩、火山岩的分布、岩性及其与构造的关系,圈定地热异常区。2、对层状分布的的地热田,依据重力、磁法、电法及地震资料,确定盆地隆起与凹陷的范围、深度,判断沉积物的特征与变化规律,大致确定可能的热储层位、断裂构造的的有无控热性。3、进行井泉调查。对已有的井孔进行调查,尤其的深的井孔,了解其深度、揭露的地层、含水层位、水质、水量、水温情况。调查泉水成因、流量、温度及其随季节的变化、水质、泉附近有无泉华、泉华的性质。4、进行水质调查。在井泉有控制性的采取水质化学分析样,分析与热水有关的化学组分。详见第四节地区化学测量。三、地热地质调查内容与基本技术要求(一)地热地质调查调查地热田的地层岩性、构造特征、地热显示特征,确定可能的热储层、热储盖层、隔水层;调查热储层的岩性、厚度、埋深、分布、相互关系及边界条件,条件允许时应收集热储孔隙率、弹性释水系数、渗透系数、压力传导系数、热储压力(水头);观测天然温泉的水温、水量;测试天然温泉的物理性质与化学成份、同位素组成、有宜及有害成份。调查至少采用与工作比例尺相同的地形图作底图,填图采用穿越法为主,辅以追踪法,用GPS等仪器定位,并将重要地质观测点绘于图上,以查明地层层序、厚度、岩性组合特征、分布范围、标志层、构造、构造形态、泉点分布等,对地层分界线、构造点和断层等,应沿线连续观察追索,详细记录和采集样品,观测点的记录要有代表性和控制性。地层标志层和找矿标志层,应用追踪法定点记录,控制连接。填图单元划分到组或段,面积大于0.05km2的第四系土层应圈定边界上图,不专门定点观察描述,但其分布区地质路线经过处,应予以记录;直径大于150m的闭合地质体,长度大于200m,宽度大于1m的线性地质体应有观察点、线控制,圈定上图,重点是断层构造带、裂隙发育带、构造形态的研究。产状控制点结合附近地形地物,一般采用交会法确定。地热调查中应系统采取水、气、岩土等样品进行分析鉴定。具体要求见“地球化学测量”一节。(二)地温测量地温测量分为地热井中地温测量与地表浅层地温测量,在地热地质调查中的地温测量为地表浅层地温测量。其主要目的是用于了解地温场在地下浅层的显示、了解地温场的平面变化及隐伏断裂的构造位置,同时可以综合定性判定断裂的导水导热性质,为地热勘探提供重要的地热信息。1、主要受断裂构造控制呈带状分布的地热田(1)首先系统测量工作区不同深度、不同地貌位置机民井的水温。(2)在此基础上,有针对性的施工深度10—15m的测温浅孔,其测温孔密度能基本控制地温场的变化规律。测温孔深度应做气温与地温较长时间(一般一昼夜)试验,测温浅孔深度以孔内地温基本不随气温波动为限,垂向观测点距1—0.5m,有条件时使用高精度测温仪,分辨率达到0.05—0.003℃,绘制不同深度的地温等值线图。(3)在有温泉出露的地区,地温测量可作为地热地质调查中的一种主要工作方法,有条件的尽量同时测量汞含量,结合汞量曲线一起绘制剖面曲线图或平面图。2、层状分布的盆地型地热田层状分布的盆地型地热田,热储埋藏深度大,部分地区实际测量地温效果往往不好。但地面调查仍应系统测量不同深度的机民井水温,并系统采取水化学分析样,重点测试与热水有关的化学组分,谋求寻找地热异常区。三、地热地质调查应注意的主要问题1、应在已有的区域地质资料和航卫片解译资料基础上进行,实地验证航卫片解译的重点问题,寻找地质露头,观察地热田的地层及岩性特征,地质构造、岩浆活动与新构造运动情况,分析地热勘查区地热形成的地质构造背景。2、调查勘查区地表热异常分布特征及与构造的关系。3、调查勘查区温泉出露及分布特征、泉水温度及流量变化特征及开发利用历史,调查勘查区内及其邻区已有地热井水温、水量、开采层段及地层岩性特征,地热水开发利用及动态变化特征。4、对不同精度、工作目的和不同热储类型的地热地质调查,其工作内容应有所侧重。4、地热地质调查点的定额,由于各工作区的情况不同,总体宜满足相应比例尺地质调查的定额。四、提交的资料1、实际材料图2、野外记录本及野外手图3、水井调查卡片4、测温浅孔柱状图5、测温记录表6、水质分析一览表7、水井调查一览表8、阶段性成果(1)地热地质调查工作文字总结(2)地温等值线图(3)地质图及构造图,(4)地热异常分布图。地热异常分布图应以地质图及构造图为背景,套合地温等值线图、化学组分分布图等与地热有关的其他图件,通过综合分析,圈定工作区地热异常区,指导下步地面物探与钻探工作。第四节地球化学测量一、地热地球化学在地热资源勘查中的作用地热地球化学是研究在地热活动过程中,在地下和地表形成的化学组分和地球化学现象,进而了解地热流体的形成原因和来龙去脉,预测地热资源勘查和开发利用前景。地热地球化学是地热资勘查必须的手段之一,是地热开发利用时进行环境评价的必要依据。《地热资源地质勘查规范》(GB/T11615—2010)明确将地球化学勘查列入地热勘查的一种技术手段,我区在地热勘查中运用的比较少,只有个别项目对钻探岩芯做过水热蚀变研究,对地下水进行过相关的化学分析。二、地热地球化学勘查一些基本方法目前常用的地热地球化学勘查,常用的有土壤化学成分分析、气体测量、岩芯水热蚀变矿物成分分析、地下水与地热流体化学成分分析等。1、土壤与岩芯化学成分测量一般在基岩出露区和基岩浅埋深区进行,用以了解隐伏构造及地下热储情况。主要是对土壤中砷、汞、锑的探测,一般与氡、汞、氦、二氧化碳等气体同时进行。有温泉出露的地方要进行泉华与水热蚀变进行取样分析测试。对地面泉华和钻井岩芯的水热蚀变,采集代表性岩样作岩石化学全分析和等离子体光谱及质谱分析或光谱半定量分析。采样密度随勘查阶段的深入应加密和增加检测项目。地热流体向上运移至地表或接近地表处,由于温度、压力下降,热流体中的硅、钙、硫从热流体中析出沉淀,形成硅华、钙华、硫华,这些沉淀物反应了当时热流体在深处的温度。硅华>150℃钙华<150℃硫华>100℃水热蚀变矿物测试一般在温泉出水口附近、地热钻探岩芯中采取,进行薄片鉴定。地热流体上升至地表或在热储中和岩石相互作用而形成新的矿物,这些矿物的形成反映了当时地热区的地温状况。高岭石<150℃绿泥石150℃浊沸石100-200℃怀腊开沸石>200℃利用蚀变矿物判断该地热区有无勘查前景时,还须对蚀变同位素年龄进行测定,越年轻越有前景。地热地质现象和化学组分,和挽近期岩浆活动有关,分析岩体,特别是分析岩芯的水热蚀变矿物对地热资源勘查还是有一定意义的。2、气体测量一般也在基岩出露区和基岩浅埋深区进行,用以了解隐伏构造及地下热储情况。气体测量的主要项目有氡、汞、氦、二氧化碳等,这些挥发性气体在地表形成异常,反映地下存在热储,特别观测通过断裂随热水上升到土壤中的氦、汞等气体。氦与Rn、CO2以及其它气体组合,可进行如下地质判断:(1)He与Hg、He与As异常,表明地下有高温热储;(2)He与CO2异常,表明深部有热储存在;(3)CO2与Rn异常,有断裂带存在;(4)Rn和Ar异常,表明基岩埋藏较浅。3、地下水与地热流体化学成分测量对勘查区的温泉和其他地热显示、已有深井,选择代表性地热流体样品作化学全分析和同位素测试。在不同水力类型地下水与地热水中取样进行F、SiO2、B等组份的测定,可以帮助确定地热异常分布范围。选用泉华和地热流体中的某些化学组分、气体成分、同位素建立地热温标,利用地球化学温标来估算热储温度,预测地热田潜力。具体计算方法见《地热资源地质勘查规范》(GB/T11615—2010)附录A。测定代表性地热流体,常温带地下水、地表水、大气降水中稳定性同位素和放射性同位素,可以推断地热流体的成因与年龄。土壤化学成分测量和气体测量在我区目前在地热地质勘查中运用的比较少,还没有成熟的经验,具体采样密度、采样方法可根据实际情况确定。一般以剖面的方式进行采样,在可能的断裂带附近或明显的地热异常区,应加大采样密度。地热井、地热异常井、温泉野外调查表格可参照表2—1、2—2。表2—1地热(异常)井野外调查表编号项目名称坐标X:Y:地理位置井口高程m地面高程m地热井类型矿床规模井深m取水段管径m管材类型开采层段埋深m单位降深流体产量m3/d·m开采层段范围m建井日期洗井情况施工单位所属单位日开采量m3/d日开采热量J/d监测起止日期监测项目取样情况摄影编号主要用途及经济效益盖层地质年代盖层岩性盖层厚度m热储地质年代热储岩性热储厚度流体特征井口温度℃气温℃水位埋深m压力Pa测井井内最高温度℃测井井底温度℃流量m3/h热量J/h井口地质环境开发利用状况调查点平面位置示意图调查单位调查人调查日期表2—2温泉野外调查表编号项目名称所属地热田编号泉口高程m坐标X:Y:地理位置泉点名称图幅编号泉点类型矿床规模泉域面积km2水、热来源取样情况摄影编号主要用途及经济效益盖层地质年代盖层岩性盖层厚度m热储地质年代热储岩性流体特征泉口温度℃气温℃压力Pa水位埋深m流量m3/h热量J/h泉口地质环境泉口沉积物温泉成因开发利用状况调查点剖面示意图调查单位调查人调查日期第五节地球物理勘查我区在地热勘查常用的地球物理勘查方法主要有大地电磁测深法(包括可控源音频大地电磁测深(CSAMT)和音频大地电磁测深(AMT))及二维地震。大地电磁测深法与二维地震的具体技术要求见附件一、附件二。第六节地热钻探一、地热井类型按照《地热钻探技术规程》(2011讨论稿),地热井分类如下。需要指出的是我区目前开展的地热钻探,凡是有开采价值的勘探孔,均为探采结合井,按照生产井的要求进行成井。表2—3地热井类型分类类型特点及用途按热储分类裂隙岩溶型热储地热井(孔)赋存于基岩裂隙、溶隙中的地下热水。孔隙型热储地热井(孔)赋存于新近系、第四系孔隙中的地下热水。勘探孔(井)施工中要采取岩土样品、热水样品、蒸汽样品、测量低温和压力、进行产能试验等。生产井深度按照热储层埋藏深度确定。取得可供发电或其它利用的一定数量的热水和蒸汽,采用油井套管程序和完井方法。探采结合井兼有勘探孔(井)与生产井的用途。回灌井与生产井配对的“姊妹井”,口径与套管程序按回灌量选定,钻孔结构力求简化。按温度分类高温地热井温度≥150°C,主要用于发电、烘干、采暖等。中温地热井温度在90~150°C,主要用于发电、烘干、采暖等。低温地热井温度在25~90°C,主要用于洗浴、温室、
本文标题:地热勘查主要技术方法及要求
链接地址:https://www.777doc.com/doc-6845880 .html