您好,欢迎访问三七文档
当前位置:首页 > 财经/贸易 > 资产评估/会计 > 中考综合题20180218
1南京清江花苑严老师1.(10分)等腰三角形是生活中常见的几何图形,我们称有两边相等的三角形是等腰三角形,类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)如图1,在四边形ABCD中添加一个条件,使得四边形ABCD是“等邻边四边形”;(2)如图2,“等邻边四边形”ABCD中,AB=AD,AC=BD,且对角线AC、BD互相平分,请你证明“等邻边四边形”ABCD是正方形;(3)如图3,“等邻边四边形”ABCD中,AB=AD,∠BAD+∠BCD=90°,AC、BD为对角线,AC=AB,试探究BC、CD、BD之间的数量关系,并证明你的结论.2南京清江花苑严老师2.(10分)二次函数y=ax2﹣2x+c的图象与x轴交于A、C两点,点C(3,0),与y轴交于点B(0,﹣3).(1)a=,c=;(2)如图1,P是x轴上一动点,点D(0,1)在y轴上,连接PD,求PD+PC的最小值;(3)如图2,点M在抛物线上,若S△MBC=3,求点M的坐标.3南京清江花苑严老师3.如图,已知AB是⊙O的直径,点P在BA的延长线上,PD切⊙O于点D,过点B作BE垂直于PD,交PD的延长线于点C,连接AD并延长,交BE于点E.(1)求证:AB=BE;(2)若PA=2,cosB=,求⊙O半径的长.4南京清江花苑严老师4.若两条抛物线的顶点相同,则称它们为“友好抛物线”,已知抛物线C1:y1=﹣x2+ax+b与抛物线C2:y2=2x2+4x+6为“友好抛物线”,抛物线C1与x轴交于点A、C,与y轴交于点B.(1)求抛物线C1的表达式.(2)若F(t,0)(﹣3<t<0)是x轴上的一点,过点F作x轴的垂线交抛物线与点P,交直线AB于点E,过点P作PD⊥AB于点D.①是否存在点F,使PE+PD的值最大,若存在,请求出t的值;若不存在,请说明理由.②连接PA,以AP为边作图示一侧的正方形APMN,随着点F的运动,正方形的大小、位置也随之改变.当正方形APMN中的边MN与y轴有且仅有一个交点时,求t的取值范围.5南京清江花苑严老师5.阅读材料:如图1,在平面直角坐标系中,A、B两点的坐标分别为A(x1,y1),B(x2,y2),AB中点P的坐标为(xp,yp).由xp﹣x1=x2﹣xp,得xp=,同理yp=,所以AB的中点坐标为(,).由勾股定理得AB2=|x2﹣x1|2+|y2﹣y1|2,所以A、B两点间的距离公式为AB=.这两公式对A、B在平面直角坐标系中其它位置也成立.解答下列问题:(1)已知M(1,﹣2),N(﹣1,2),直接利用公式填空:MN中点坐标为,MN=.如图2,直线l:y=2x+2与抛物线y=2x2交于A、B两点,P为AB的中点,过P作x轴的垂线交抛物线于点C.(a)求A、B两点的坐标及C点的坐标;(b)连结AB、AC,求证△ABC为直角三角形;(c)将直线l平移到C点时得到直线l′,求两直线l与l′的距离.6南京清江花苑严老师6.图甲,四边形OABC的边OA、OC分别在x轴、y轴的正半轴上,顶点在B点的抛物线交x轴于点A、D,交y轴于点E,连结AB、AE、BE.已知tan∠CBE=,A(3,0),D(﹣1,0),E(0,3).(1)求抛物线的解析式及顶点B的坐标;(2)求证:CB是△ABE外接圆的切线;(3)试探究坐标轴上是否存在一点P,使以D、E、P为顶点的三角形与△ABE相似,若存在,求出点P的坐标;若不存在,请说明理由.7南京清江花苑严老师7.(本题满分12分)问题:如图(1),点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,试判断BE、EF、FD之间的数量关系.【发现证明】小聪把△ABE绕点A逆时针旋转90°至△ADG,从而发现EF=BE+FD,请你利用图(1)证明上述结论.【类比引申】如图(2),四边形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,点E、F分别在边BC、CD上,则当∠EAF与∠BAD满足▲关系时,仍有EF=BE+FD;请证明你的结论.【探究应用】如图(3),在某公园的同一水平面上,四条通道围成四边形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分别有景点E、F,且AE⊥AD,DF=40(﹣1)米,现要在E、F之间修一条笔直道路,求这条道路EF的长.(结果取整数,参考数据:=1.41,=1.73)8南京清江花苑严老师8.(本题满分14分)已知,经过点A(-4,4)的抛物线y=ax2+bx与x轴相交于点B(-3,0).](1)求抛物线的解析式;(2)如图1,过点A作AH⊥x轴,垂足为H,平行于y轴的直线交线段AO于点Q,交抛物线于点P,当四边形AHPQ为平行四边形时,求∠AOP的度数;(3)如图2,,试探究:在抛物线上是否存在点C,使∠CAO=∠BAO?若存在,请求出直线AC解析式;若不存在,请说明理由.图1xyOABHxyCBOA图29南京清江花苑严老师9.(本题满分12分)两个全等的直角三角形ABC和DEF重叠在一起,其中∠A=60°,AC=4.固定△ABC不动,将△DEF进行如下操作:(1)操作发现如图①,△DEF沿线段AB向右平移(即D点在线段AB内移动),连接DC,CF,FB,四边形CDBF的形状在不断的变化,那么它的面积大小是否变化呢?如果不变化,请求出其面积.(2)猜想论证如图②,当D点移到AB的中点时,请你猜想四边形CDBF的形状,并说明理由.(3)拓展探究如图③,△DEF的D点固定在AB的中点,然后绕D点按顺时针方向旋转△DEF,使DF落在AB边上,此时F点恰好与B点重合,连接AE,求sin图③(F)(E)αABCDE(F)图①FEDCBA图②ABCDEF10南京清江花苑严老师10.(本题满分14分)如图1,抛物线y=ax2+bx+5的图象过A(﹣1,0),B(5,0)两点,与y轴交于点C,作直线BC,动点P从点C出发,以每秒2个单位长度的速度沿CB向点B运动,运动时间为t秒,当点P与点B重合时停止运动.(1)求抛物线的表达式;(2)如图2,当t=1时,若点Q是X轴上的一个动点,如果以Q,P,B为顶点的三角形与△ABC相似,求出Q点的坐标;(3)如图3,过点P向x轴作垂线分别交x轴,抛物线于E、F两点.①求PF的长度关于t的函数表达式,并求出PF的长度的最大值;②连接BF,将△PBF沿BF折叠得到△P′BF,当t为何值时,四边形PFP′B是菱形?11南京清江花苑严老师11.(12分)如图,在平面直角坐标系中,已知点A(0,1),直线l:1y。动点P满足条件:①P在这个平面直角坐标系中;②P到A的距离和P到l的距离相等;(1)求点P所经过的轨迹方程,并在网格中绘制这个图像。(提示:平面直角坐标系中两点之间的距离可以通过勾股定理来求得)(2)已知直线1kxy,小明同学说,这条直线与(1)中所绘的图像有两个交点?你能说明小明为什么这么说吗?(3)经过了上述的计算、绘图,小明发现,如果第(2)问的两个交点分别为B、C,那么,过的中点M作直线l的垂线,垂足为H,连接BH、CH,所得到的三角形BCH是个特殊的三角形,你能说明它是什么三角形吗?为什么?12、(12分)如图1,正方形ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第12南京清江花苑严老师一象限.动点P在正方形ABCD的边上,从点A出发沿A→B→C→D匀速运动,同时动点Q以相同速度在x轴上运动,当P点到D点时,两点同时停止运动,设运动的时间为t秒.(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图2所示,请写出点Q开始运动时的坐标及点P运动速度;(2)求正方形边长及顶点C的坐标;(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标.(4)如果点P、Q保持原速度速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.图1图2
本文标题:中考综合题20180218
链接地址:https://www.777doc.com/doc-6699222 .html