您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 山西省晋中市20182019学年高二上学期期末调研测试数学理试题解析版
山西省晋中市2018-2019学年高二上学期期末调研测试数学(理)试题一、选择题(本大题共12小题,共60.0分)1.若曲线𝑥22−𝑘+𝑦22+𝑘=1表示椭圆,则k的取值范围是()A.𝑘2B.𝑘−2C.−2𝑘2D.−2𝑘0或0𝑘22.下列说法错误的是()A.棱柱的侧面都是平行四边形B.所有面都是三角形的多面体一定是三棱锥C.用一个平面去截正方体,截面图形可能是五边形D.将直角三角形绕其直角边所在直线旋转一周所得的几何体是圆锥3.已知直线l1的方程为2x+(5+m)y=8,直线l2的方程为(3+m)x+4y=5-3m,若l1∥l2,则m=()A.−1或−7B.−1C.−7D.−34.已知圆O1:x2+y2-4x+4y-41=0,圆O2:(x+1)2+(y-2)2=4,则两圆的位置关系为()A.外离B.外切C.相交D.内切5.某空间几何体的三视图如图所示,该几何体是()A.三棱柱B.三棱锥C.四棱柱D.四棱锥6.下列命题中,真命题的个数是()①若“p∨q”为真命题,则“p∧q”为真命题;②“∀a∈(0,+∞),函数y=ax在定义域内单调递增”的否定;③l为直线,α,β为两个不同的平面,若l⊥β,α⊥β,则l∥α;④“∀x∈R,x2≥0”的否定为“∃x0∉R,x02<0”.A..1B..2C..3D..47.已知F1,F2是双曲线𝑥216−𝑦29=1的左右焦点,P是双曲线右支上一点,M是PF1的中点,若|OM|=1,则|PF1|是()A.10B.8C.6D.48.在正四面体P-ABC中,M是棱PA的中点,则异面直线MB与AC所成角的余弦值为()A.16B.√36C.13D.√339.对于直线m,n和平面α,β,则α∥β的一个充分条件是()A..𝑚⊂𝛼,𝑛⊂𝛽,𝑚//𝛽,𝑛//𝛼B.𝑚//𝑛,𝑚//𝛼,𝑛//𝛽C.𝑚//𝑛,𝑚⊥𝛼,𝑛⊥𝛽D.𝑚⊥𝑛,𝑚⊥𝛼,𝑛⊥𝛽10.已知直线l2:3x-4y-6=0,直线l2:y=-2,抛物线x2=4y上的动点P到直线l1与直线l2距离之和的最小值是()A.2B.3C.4D.33811.实数xy满足x=√1−𝑦2,则𝑥+𝑦+3𝑥+1的最小值是()A.34B.74C.2D.312.如图,表面积为12π的球O内切于正方体ABCD-A1B1C1D1,则平面ACD1截球O的截面面积为()A.√2𝜋B.√3𝜋C.2𝜋D.4𝜋二、填空题(本大题共3小题,共15.0分)13.已知直线l1的方向向量为𝑎⃗⃗=(3,2,1),直线l2的方向向量为𝑏⃗=(0,m,-4),且l1⊥l2,则实数m的值为______.14.已知命题“∃x0∈[1,2],x02-2ax0+1>0”是真命题,则实数a的取值范围为______.15.已知双曲线𝑥2𝑎2−𝑦2𝑏2=1(a>0,b>0)的右焦点为F,P,Q为双曲线上关于原点对称的两点,若𝑃𝐹⃗⃗⃗⃗⃗⋅𝑄𝐹⃗⃗⃗⃗⃗=0,且∠POF<𝜋6,则该双曲线的离心率的取值范围为______.三、解答题(本大题共7小题,共75.0分)16.直线√3x-y+1=0的倾斜角为______.17.已知p:x2-4ax+3a2<0(a>0),q:8𝑥−1<1,且¬q是¬p的充分不必要条件,求a的取值范围.18.如图,已知点E是正方形ABCD边AD的中点,现将△ABE沿BE所在直线翻折成到△A'BE,使AC=BC,并连接A'C,A'D.(1)求证:DE∥平面A'BC;(2)求证:A'E⊥平面A'BC.19.已知物线C:y2=2px(p>0)过点M(4,-4√2).(1)求抛物线C的方程;(2)设F为抛物线C的焦点,直线l:y=2x-8与抛物线C交于A,B两点,求△FAB的面积.20.已知动直线l1:x+my-2m=0与动直线l2:mx-y-4m+2=0相交于点M,记动点M的轨迹为曲线C.(1)求曲线C的方程;(2)过点P(-1,0)作曲线C的两条切线,切点分别为A,B,求直线AB的方程.21.如图,在四棱锥P-ABCD中,E是PC的中点,底面ABCD为矩形,AB=4,AD=2,PA=PD,且平面PAD⊥平面ABCD,平面ABE与棱PD交于点F.(1)求证:EF∥平面PAB;(2)若PB与平面ABCD所成角的正弦值为2√2121,求二面角P-AE-B的余弦值.22.已知椭圆𝑥2𝑎2+𝑦2𝑏2=1(a>b>0)的右焦点为F(2,0),且过点(2√3,√3).(1)求椭圆的标准方程;(2)设直线l:y=kx(k>0)与椭圆在第一象限的交点为M,过点F且斜率为-1的直线与l交于点N,若|𝐹𝑁||𝑀𝑁|=2√23sin∠FON(O为坐标原点),求k的值.答案和解析1.【答案】D【解析】解:∵曲线表示椭圆,∴,解得-2<k<2,且k≠0.故选:D.曲线表示椭圆,列出不等式组,解出即可得出.本题考查了椭圆的标准方程及其性质、不等式的解法,考查了推理能力与计算能力,属于基础题.2.【答案】B【解析】解:由棱柱的性质可得棱柱的侧面都是平行四边形,则A正确;所有面都是三角形的多面体不一定是三棱锥,比如正八面体的各个面都是正三角形,则B错误;用一个平面去截正方体,与正方体的五个面相交,可得截面图形是五边形,则C正确;由圆锥的定义可得直角三角形绕其直角边所在直线旋转一周所得的几何体是圆锥,则D正确.故选:B.由棱柱的性质可判断A;可举正八面体可判断B;用一个平面去截正方体,与正方体的五个面相交,可判断C;由圆锥的定义可判断D.本题考查空间多面体和旋转体的定义,考查定义法的运用,考查判断能力和推理能力,属于基础题.3.【答案】C【解析】解:由(5+m)(3+m)-8=0,化为:m2+8m+7=0,解得m=-1,-7.经过验证m=-1时,两条直线重合,舍去.∴m=-7.故选:C.由(5+m)(3+m)-8=0,解得m.经过验证即可得出.本题考查了直线平行、方程的解法,考查了推理能力与计算能力,属于基础题.4.【答案】D【解析】解:由于圆O1:x2+y2-4x+4y-41=0,即(x-2)2+(y+2)2=49,表示以C1(2,-2)为圆心,半径等于7的圆.圆O2:(x+1)2+(y-2)2=4,表示以C2(-1,2)为圆心,半径等于2的圆.由于两圆的圆心距等于=5=7-2.故两个圆相内切.故选:D.把圆的方程化为标准形式,求出圆心和半径,根据两圆的圆心距等于5,与半径差的关系,可得两个圆关系.本题主要考查圆的标准方程,圆和圆的位置关系,圆的标准方程的求法,点到直线的距离公式、弦长公式的应用,属于中档题.5.【答案】D【解析】解:根据三视图知,该几何体是一个立放的四棱锥,如图所示;故选:D.根据三视图知该几何体是一个立放的四棱锥.本题考查了利用三视图判断几何体结构特征的应用问题,是基础题.6.【答案】A【解析】解:①若“p∨q”为真命题,可知两个命题至少一个是真命题,判断为“p∧q”为真命题;不正确;②“∀a∈(0,+∞),函数y=ax在定义域内单调递增”的否定:“∃a∈(0,+∞),函数y=ax在定义域内单调递减”;例如a=,y=x在定义域内单调递减;所以②正确,③l为直线,α,β为两个不同的平面,若l⊥β,α⊥β,则l∥α;也可能l⊂α,所以③不正确;④“∀x∈R,x2≥0”的否定为“∃x0∉R,x02<0”.不满足命题的否定形式,所以④不正确;只有②是真命题;故选:A.利用复合命题的真假判断①的正误;利用指数函数的单调性判断②的正误;直线与平面垂直关系判断③的正误;命题的否定判断④的正误;本题考查命题的真假的判断与应用,涉及复合命题的真假,指数函数的单调性,命题的否定直线与平面的位置关系的应用,是基本知识的考查.7.【答案】A【解析】解:∵M是PF1的中点,O是F1F2中点,∴|OM|=|PF2|,∵|OM|=1,∴|PF2|=2,∵P是双曲线右支上一点,∴|PF1|-|PF2|=8,∴|PF1|=10故选:A.利用三角形中位线性质,求出|PF2|=2,利用双曲线定义,求出|PF1|.本题考查双曲线中线段长的求法,是基础题.解题时要认真审题,注意双曲线定义和三角形中位线性质的灵活运用.8.【答案】B【解析】解:取PC中点N,连结MB,MC,设正四面体的棱长为2,则BM=BC==,MC=1,且MC∥AC,∴∠BMC是异面直线MB与AC所成角(或所成角的补角),故异面直线MB与AC所成角的余弦值为:cos∠BMC===.故选:B.取PC中点N,连结MB,MC,则MC∥AC,∠BMC是异面直线MB与AC所成角(或所成角的补角),由此能求出异面直线MB与AC所成角的余弦值.本题考查异面直线所成角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力、运算求解能力,考查化归与转化思想、数形结合思想,是中档题.9.【答案】C【解析】解:A.这种情况下,α,β可能相交,让m,n都和交线平行即可;B.这种情况下,α,β可能相交,让m,n都和交线平行即可;C.∵m∥n,m⊥α,∴n⊥α,又n⊥β,同时和一直线垂直的两平面平行,∴α∥β;D.如果α⊥β,也存在m⊥n,且m⊥α,n⊥β.故选:C.A,B,D三个选项下的α,β相交时,也满足每个选项的条件,所以由A,B,D中的条件得不出α∥β,而选项C可以得到平面α,β同时和一条直线垂直,所以α∥β,所以C中的条件是α∥β的充分条件.本题考查线面平行的判定定理,两条平行直线分别和两个平面平行,这两个平面可能相交,平行线中的一条垂直于一个平面,另一条也垂直于这个平面,同时垂直于一条直线的两平面平行.10.【答案】B【解析】解:抛物线的焦点坐标为F(0,1),准线方程为y=-1,过P作PB垂直直线y=-2角y=-2于A,交y=-1于B,由抛物线的定义得|PB|=|PF|,|PB|=|PA|-1则点P到直线l1与直线l2距离之和|PC|+|PA|=|PC|+|PA|=|PB|+1+|PC|=|PF|+|PC|+1≥|FD|+1,此时最小值为F到直线3x-4y-6=0的距离d=|FD|==,则抛物线x2=4y上的动点P到直线l1与直线l2距离之和的最小值是d+1=2+1=3,故选:B.根据抛物线的定义进行转化,结合图象利用点到直线的距离公式进行求解即可.本题主要考查抛物线性质和定义的应用,利用图象,转化为点到直线的距离问题是解决本题的关键.利用数形结合是解决本题的关键.11.【答案】B【解析】解:x=⇒x2+y2=1(x≥0)表示半圆,如图:=1+设t=,则tx-y+t-2=0与圆x2+y2=1相切时t取最小值,由=1得t=,所以原式的最小值为1+=,故选:B.x=⇒x2+y2=1(x≥0)表示半圆;=1+,转化为求的最小值,即求过P(-1,-2)的圆的切线的斜率.本题考查了基本不等式及其应用,圆的切线,数形结合思想,属中档题.12.【答案】C【解析】解:设球的半径为r,由球O得表面积为12π,得4πr2=12π,则r=,即正方体棱长为,根据题意知,平面ACD1是边长为的正三角形,且球与以点D为公共点的三个面的切点恰为三角形ACD1三边的中点,故所求截面的面积是该正三角形的内切圆的面积,则由图得,△ACD1内切圆的半径是×tan30°=,则所求的截面圆的面积是π×=2π.故选:C.根据正方体和球的结构特征,判断出平面ACD1是正三角形,求出它的边长,再通过图求出它的内切圆的半径,最后求出内切圆的面积.本题考查了正方体和它的内接球的几何结构特征,关键是想象出截面图的形状,考查了空间想象能力,是中档题.13.【答案】2【解析】解:∵l1⊥l2;∴;∴;∴m=2.故答案为:2.根据直线方向向量的概念及l1⊥l2即可得出,从而得出,进行数量积的坐标运算即可求出m的值.考查直线方向向量的概念,向量垂直的充要条件,向量数量积的坐标运算.14.【答案】(-∞,54)【解析】解:命题“∃x0∈[1,2],x02-2ax0+1>0”是真命
本文标题:山西省晋中市20182019学年高二上学期期末调研测试数学理试题解析版
链接地址:https://www.777doc.com/doc-5769908 .html