您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 第二章二次函数检测题人教版九年级下册精品试题
海量资源尽在星星文库:第二章单元检测卷一、选择题(每小题3分;共33分)1.二次函数,当y0时,自变量x的取值范围是()A.-1<x<3B.x<-1C.x>3D.x<-1或x>32.如图,双曲线y=经过抛物线y=ax2+bx(a≠0)的顶点(﹣1,m)(m>0),则下列结论中,正确的是()A.a+b=kB.2a+b=0C.b<k<0D.k<a<03.将抛物线y=(x﹣1)2+4先向右平移4个单位长度,再向下平移3个单位长度,得到的抛物线的顶点坐标为()A.(5,4)B.(1,4)C.(1,1)D.(5,1)4.已知二次函数y=x2﹣x+a(a>0),当自变量x取m时,其相应的函数值y<0,那么下列结论中正确的是()A.m﹣1的函数值小于0B.m﹣1的函数值大于0C.m﹣1的函数值等于0D.m﹣1的函数值与0的大小关系不确定5.抛物线y=x2+bx+c图象向右平移2个单位再向下平移3个单位,所得图象的解析式为y=x2﹣2x﹣3,则b、c的值为()A.b=2,c=2B.b=2,c=0C.b=﹣2,c=﹣1D.b=﹣3,c=26.抛物线y=(x+2)2+3的顶点坐标是()A.(-2,3)B.(2,3)C.(-2,-3)D.(2,-3)海量资源尽在星星文库:在平面直角坐标系中,将抛物线y=x2-4先向右平移2个单位,再向上平移2个单位,得到的抛物线解析式为()A.y=(x+2)2+2B.y=(x-2)2-2C.y=(x-2)2+2D.y=(x+2)2-28.二次函数y=ax2+bx+c(a≠0)的部分图象如图③所示,图象过点(﹣1,0),对称轴为直线x=2,则下列结论中正确的个数有()①4a+b=0;②9a+3b+c<0;③若点A(﹣3,y1),点B(﹣,y2),点C(5,y3)在该函数图象上,则y1<y3<y2;④若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.A.1个B.2个C.3个D.4个9.生产季节性产品的企业,当它的产品无利润时就会及时停产,现有一生产季节性产品的企业,一年中获得利润y与月份n之间的函数关系式是y=-n2+15n-36,那么该企业一年中应停产的月份是()A.1月,2月B.1月,2月,3月C.3月,12月D.1月,2月,3月,12月10.将抛物线y=x2﹣4x﹣4向左平移3个单位,再向上平移5个单位,得到抛物线的函数表达式为()A.y=(x+1)2﹣13B.y=(x﹣5)2﹣3C.y=(x﹣5)2﹣13D.y=(x+1)2﹣311.如图所示,抛物线的对称轴是直线,且图像经过点(3,0),则的值为()海量资源尽在星星文库:-1C.1D.2二、填空题(共10题;共30分)12.已知二次函数y=﹣x2﹣2x+1,当x________时,y随x的增大而增大.13.(2014•扬州)如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为________.14.农机厂第一个月水泵的产量为50(台),第三个月的产量y(台)与月平均增长率x之间的关系表示为________.15.如果抛物线y=ax2﹣2ax+1经过点A(﹣1,7)、B(x,7),那么x=________.16.根据下表判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的取值范围是________x0.40.50.60.7ax2+bx+c﹣0.64﹣0.250.160.5917.如图是一次函数y=kx+b的图象的大致位置,试判断关于x的一元二次方程x2﹣2x+kb+1=0的根的判别式△________0(填:“>”或“=”或“<”).18.如图,抛物线与轴的一个交点A在点(-2,0)和(1,0)之间(包括这两点),顶点C是矩形DEFG上(包括边界和内部)的一个动点,则的取值范围是海量资源尽在星星文库:.19.形状与抛物线y=2x2﹣3x+1的图象形状相同,但开口方向不同,顶点坐标是(0,﹣5)的抛物线的关系式为________.20.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如下表:则当2<y<5时,x的取值范围是________x…﹣10123…y…105212…21.若二次函数y=2x2﹣x﹣m与x轴有两个交点,则m的取值范围是________.三、解答题(共4题;共37分)22.使得函数值为0的自变量的值称为函数的零点.例如,对于函数y=x﹣1,令y=0可得x=1,我们说1是函数y=x﹣1的零点.已知函数y=x2﹣2mx﹣2(m+3)(m为常数)(1)当m=0时,求该函数的零点.(2)证明:无论m取何值,该函数总有两个零点.23.如图,王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线y=﹣x2+x,其中y(m)是球飞行的高度,x(m)是球飞行的水平距离.(1)飞行的水平距离是多少时,球最高?(2)球从飞出到落地的水平距离是多少?海量资源尽在星星文库:已知二次函数图象顶点坐标(﹣3,)且图象过点(2,),求二次函数解析式及图象与y轴的交点坐标.25.如图,在平面直角坐标系中,O为坐标原点,直线y=﹣x﹣3与x轴交于点A,与y轴交于点C,抛物线y=x2+bx+c经过A、C两点,与x轴交于另一点B海量资源尽在星星文库:(1)求抛物线的解析式;(2)点D是第二象限抛物线上的一个动点,连接AD、BD、CD,当S△ACD=S四边形ACBD时,求D点坐标;(3)在(2)的条件下,连接BC,过点D作DE⊥BC,交CB的延长线于点E,点P是第三象限抛物线上的一个动点,点P关于点B的对称点为点Q,连接QE,延长QE与抛物线在A、D之间的部分交于一点F,当∠DEF+∠BPC=∠DBE时,求EF的长.海量资源尽在星星文库:参考答案一、选择题ACDBBABCDDB二、填空题12.<﹣213.014.15.316.0.5<x<0.617.>18.-≤a≤-19.y=﹣2x2﹣520.0<x<1或3<x<421.m≥﹣三、解答题22.1)解:当m=0时,令y=0,则x2﹣6=0,解得x=±,所以,m=0时,该函数的零点为±;(2)证明:令y=0,则x2﹣2mx﹣2(m+3)=0,△=b2﹣4ac=(﹣2m)2﹣4×1×2(m+3),=4m2+8m+24,=4(m+1)2+20,∵无论m为何值时,4(m+1)2≥0,∴△=4(m+1)2+20>0,∴关于x的方程总有不相等的两个实数根,即,无论m取何值,该函数总有两个零点.23.解:(1)∵y=﹣x2+x=﹣(x﹣4)2+,∴当x=4时,y有最大值为.所以当球水平飞行距离为4米时,球的高度达到最大,最大高度为米;(2)令y=0,海量资源尽在星星文库:则﹣x2+x=0,解得x1=0,x2=8.所以这次击球,球飞行的最大水平距离是8米.24.解:设二次函数的解析式为y=a(x﹣h)2+k,把h=﹣3,k=,和点(2,)代入y=a(x﹣h)2+k,得a(2+3)2+=,解得a=,所以二次函数的解析式为y=(x+3)2+,当x=0时,y=×9+=,所以函数图象与y轴的交点坐标(0,)25.(1)解:∵令x=0得:y=﹣3,∴C(0,﹣3).令y=0得:﹣x﹣3=0,解得x=﹣3,∴A(﹣3,0).将A、C两点的坐标代入抛物线的解析式的:,解得:.∴抛物线的解析式为y=x2+2x﹣3(2)解:如图1所示:令y=0得:x2+2x﹣3=0,解得x=﹣3或x=1.海量资源尽在星星文库:∴AB=4.∵S△ACD=S四边形ACBD,∴S△ADC:S△DCB=3:5.∴AE:EB=3:5.∴AE=4×=.∴点E的坐标为(﹣,0).设EC的解析式为y=kx+b,将点C和点E的坐标代入得:,解得:k=﹣2,b=﹣3.∴直线CE的解析式为y=﹣2x﹣3.将y=﹣2x﹣3与y=x2+2x﹣3联立,解得:x=﹣4或x=0(舍去),将x=﹣4代入y=﹣2x﹣3得:y=5.∴点D的坐标为(﹣4,5)(3)解:如图2所示:过点D作DN⊥x轴,垂足为N,过点P作PM⊥x轴,垂足为M.设直线BC的解析式为y=kx+b,将点C和点B的坐标代入得:,解得:k=3,b=﹣3.∴直线BC的解析式为y=3x﹣3.设直线DE的解析式为y=﹣x+n,将点D的坐标代入得:﹣×(﹣4)+n=5,解得n=5﹣=.∴直线DE的解析式为y=﹣x+.将y=3x﹣3与y=﹣x+联立解得:x=2,y=3.海量资源尽在星星文库:∴点E坐标为(2,3).依据两点间的距离公式可知:BC=CE=.∵点P与点Q关于点B对称,∴PB=BQ.在△PCB和△QEB中,∴△PCB≌△QEB.∴∠BPC=∠Q.又∵∠DEF+∠BPC=∠DBE,∠DEF=∠QEG,∠EGB=∠Q+∠QEG∴∠DBE=∠DGB.又∵∠DBE+∠BDE=90°,∴∠DGB+∠BDG=90°,即∠PBD=90°.∵D(﹣4,5),B(1,0),∴DM=NB.∴∠DBN=45°.∴∠PBM=45°.∴PM=MB设点P的坐标为(a,a2+2a﹣3),则BM=1﹣a,PM=﹣a2﹣2a+3.∴1﹣a=﹣a2﹣2a+3,解得:a=﹣2或a=1(舍去).∴点P的坐标为(﹣2,3).∴PC∥x轴.∵∠Q=∠BPC,∴EQ∥PC.∴点E与点F的纵坐标相同.将y=3代入抛物线的解析式得:x2+2x﹣3=3,解得:x=﹣1﹣或x=﹣1+(舍去).∴点F的坐标为(﹣1,3).∴EF=2﹣(﹣1﹣)=3+海量资源尽在星星文库:
本文标题:第二章二次函数检测题人教版九年级下册精品试题
链接地址:https://www.777doc.com/doc-5643111 .html