您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 2019年湖南省中考数学精编精练4:一次函数与反比例函数(解析卷)
【备考2020】2019年湖南省中考数学精编精练4:一次函数与反比例函数姓名:__________班级:__________考号:__________一、、选择题1.(2019年湖南省湘西州)在平面直角坐标系中,将点(2,1)向右平移3个单位长度,则所得的点的坐标是()A.(0,5)B.(5,1)C.(2,4)D.(4,2)【考点】坐标与图形变化﹣平移【分析】在平面直角坐标系中,将点(2,1)向右平移时,横坐标增加,纵坐标不变.解:将点(2,1)向右平移3个单位长度,则所得的点的坐标是(5,1).故选:B.【点评】本题运用了点平移的坐标变化规律,关键是把握好规律.2.(2019年湖南省岳阳市)函数y=中,自变量x的取值范围是()A.x≠0B.x>﹣2C.x>0D.x≥﹣2且x≠0【考点】函数自变量的取值范围【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解:根据题意得:,解得:x≥﹣2且x≠0.故选:D.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数,(2)当函数表达式是分式时,考虑分式的分母不能为0,(3)当函数表达式是二次根式时,被开方数非负.3.(2019年湖南省株洲市)如图所示,在直角平面坐标系Oxy中,点A.B、C为反比例函数y=(k>0)上不同的三点,连接OA.OB、OC,过点A作AD⊥y轴于点D,过点B、C分别作BE,CF垂直x轴于点E、F,OC与BE相交于点M,记△AOD、△BOM、四边形CMEF的面积分别为S1、S2、S3,则()A.S1=S2+S3B.S2=S3C.S3>S2>S1D.S1S2<S32【考点】反比例函数的性质,反比例函数系数k的几何意义,反比例函数图象上点的坐标特征,解直角三角形【分析】根据反比例函数系数k的几何意义得到S3=S2,即可得到结论.解:∵点A.B、C为反比例函数y=(k>0)上不同的三点,AD⊥y轴,BE,CF垂直x轴于点E、F,∴S1=k,S△BOE=S△COF=k,∵S△BOE﹣SOME=S△CDF﹣S△OME,∴S3=S2,故选:B.【点评】本题考查了反比例函数系数k的几何意义,反比例函数的性质,正确的识别图形是解题的关键.4.(2019年湖南省娄底市)如图,⊙O的半径为2,双曲线的解析式分别为y=,则阴影部分的面积是()A.4πB.3πC.2πD.π【考点】反比例函数系数k的几何意义,扇形面积的计算【分析】根据反比例函数的对称性得出图中阴影部分的面积为半圆面积,进而求出即可.解:双曲线y=的图象关于x轴对称,根据图形的对称性,把第二象限和第四象限的阴影部分的面积拼到第一和第三象限中的阴影中,可以得到阴影部分就是一个扇形,并且扇形的圆心角为180°,半径为2,所以:S阴影==2π.故选:C.【点评】本题考查的是反比例函数,题目中的两条双曲线关于x轴对称,圆也是一个对称图形,可以得到图中阴影部分的面积等于圆心角为180°,半径为2的扇形的面积,用扇形面积公式计算可以求出阴影部分的面积.5.(2019年湖南省娄底市)将y=的图象向右平移1个单位长度,再向上平移1个单位长度所得图象如图,则所得图象的解析式为()A.y=+1B.y=﹣1C.y=+1D.y=﹣1【考点】反比例函数的图象,反比例函数的图象与几何变换【分析】直接根据函数图象的变换规律进行解答即可.解:由“左加右减”的原则可知,y=的图象向右平移1个单位所得函数图象的关系式是:y=,由“上加下减”的原则可知,函数y=的图象向上平移1个单位长度所得函数图象的关系式是:y=+1.故选:C.【点评】本题考查的是反比例函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.6.(2019年湖南省衡阳市)如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m为常数且m≠0)的图象都经过A(﹣1,2),B(2,﹣1),结合图象,则不等式kx+b>的解集是()A.x<﹣1B.﹣1<x<0C.x<﹣1或0<x<2D.﹣1<x<0或x>2【考点】反比例函数与一次函数的交点问题【分析】根据一次函数图象在反比例函数图象上方的x的取值范围便是不等式kx+b>的解集.解:由函数图象可知,当一次函数y1=kx+b(k≠0)的图象在反比例函数y2=(m为常数且m≠0)的图象上方时,x的取值范围是:x<﹣1或0<x<2,∴不等式kx+b>的解集是x<﹣1或0<x<2故选:C.【点评】本题是一次函数图象与反比例函数图象的交点问题:主要考查了由函数图象求不等式的解集.利用数形结合是解题的关键.7.(2019年湖南省邵阳市)一次函数y1=k1x+b1的图象l1如图所示,将直线l1向下平移若干个单位后得直线l2,l2的函数表达式为y2=k2x+b2.下列说法中错误的是()A.k1=k2B.b1<b2C.b1>b2D.当x=5时,y1>y2【考点】一次函数的图象,一次函数的性质,一次函数图象与几何变换【分析】根据两函数图象平行k相同,以及向下平移减即可判断.解:∵将直线l1向下平移若干个单位后得直线l2,∴直线l1∥直线l2,∴k1=k2,∵直线l1向下平移若干个单位后得直线l2,∴b1>b2,∴当x=5时,y1>y2,故选:B.【点评】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减,纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.8.(2019年湖南省娄底市)如图,直线y=x+b和y=kx+2与x轴分别交于点A(﹣2,0),点B(3,0),则解集为()A.x<﹣2B.x>3C.x<﹣2或x>3D.﹣2<x<3【考点】一次函数与一元一次不等式【分析】根据两条直线与x轴的交点坐标及直线的位置确定不等式组的解集即可.解:∵直线y=x+b和y=kx+2与x轴分别交于点A(﹣2,0),点B(3,0),∴解集为﹣2<x<3,故选:D.【点评】本题考查了一次函数与一元一次不等式的知识,解题的关键是能够结合图象作出判断,难度不大.9.(2019年湖南省衡阳市)如图,在直角三角形ABC中,∠C=90°,AC=BC,E是AB的中点,过点E作AC和BC的垂线,垂足分别为点D和点F,四边形CDEF沿着CA方向匀速运动,点C与点A重合时停止运动,设运动时间为t,运动过程中四边形CDEF与△ABC的重叠部分面积为S.则S关于t的函数图象大致为()A.B.C.D.【考点】动点问题的函数图象,正方形的性质、勾股定理【分析】根据已知条件得到△ABC是等腰直角三角形,推出四边形EFCD是正方形,设正方形的边长为a,当移动的距离<a时,如图1S=正方形的面积﹣△EE′H的面积=a2﹣t2,当移动的距离>a时,如图2,S=S△AC′H=(2a﹣t)2=t2﹣2at+2a2,根据函数关系式即可得到结论,解:∵在直角三角形ABC中,∠C=90°,AC=BC,∴△ABC是等腰直角三角形,∵EF⊥BC,ED⊥AC,∴四边形EFCD是矩形,∵E是AB的中点,∴EF=AC,DE=BC,∴EF=ED,∴四边形EFCD是正方形,设正方形的边长为a,如图1当移动的距离<a时,S=正方形的面积﹣△EE′H的面积=a2﹣t2,当移动的距离>a时,如图2,S=S△AC′H=(2a﹣t)2=t2﹣2at+2a2,∴S关于t的函数图象大致为C选项,故选:C.【点评】本题考查动点问题的函数图象,正方形的性质、勾股定理等知识,解题的关键是读懂题意,学会分类讨论的思想,属于中考常考题型.10.(2019年湖南省娄底市)如图,在单位长度为1米的平面直角坐标系中,曲线是由半径为2米,圆心角为120°的多次复制并首尾连接而成.现有一点P从A(A为坐标原点)出发,以每秒π米的速度沿曲线向右运动,则在第2019秒时点P的纵坐标为()A.﹣2B.﹣1C.0D.1【考点】点的坐标,坐标与图形性质【分析】先计算点P走一个的时间,得到点P纵坐标的规律:以1,0,﹣1,0四个数为一个周期依次循环,再用2019÷4=504…3,得出在第2019秒时点P的纵坐标为是﹣1.解:点运动一个用时为÷π=2秒.如图,作CD⊥AB于D,与交于点E.在Rt△ACD中,∵∠ADC=90°,∠ACD=∠ACB=60°,∴∠CAD=30°,∴CD=AC=×2=1,∴DE=CE﹣CD=2﹣1=1,∴第1秒时点P运动到点E,纵坐标为1,第2秒时点P运动到点B,纵坐标为0,第3秒时点P运动到点F,纵坐标为﹣1,第4秒时点P运动到点G,纵坐标为0,第5秒时点P运动到点H,纵坐标为1,…,∴点P的纵坐标以1,0,﹣1,0四个数为一个周期依次循环,∵2019÷4=504…3,∴第2019秒时点P的纵坐标为是﹣1.故选:B.【点评】本题考查了规律型中的点的坐标,解题的关键是找出点P纵坐标的规律:以1,0,﹣1,0四个数为一个周期依次循环.也考查了垂径定理.二、、填空题11.(2019年湖南省娄底市)函数的自变量x的取值范围是.【考点】函数自变量的取值范围【分析】根据被开方数非负列式求解即可.解:根据题意得,x﹣3≥0,解得x≥3.故答案为:x≥3.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数,(2)当函数表达式是分式时,考虑分式的分母不能为0,(3)当函数表达式是二次根式时,被开方数非负.12.(2019年湖南省湘西州)阅读材料:设=(x1,y1),=(x2,y2),如果∥,则x1•y2=x2•y1,根据该材料填空,已知=(4,3),=(8,m),且∥,则m=.【考点】点的坐标【分析】根据材料可以得到等式4m=3×8,即可求m,解:∵=(4,3),=(8,m),且∥,∴4m=3×8,∴m=6,故答案为6,【点评】本题考查新定义,点的坐标,理解阅读材料的内容,转化为所学知识求解是关键.13.(2019年湖南省益阳市)反比例函数y=的图象上有一点P(2,n),将点P向右平移1个单位,再向下平移1个单位得到点Q,若点Q也在该函数的图象上,则k=.【考点】反比例函数图象上点的坐标特征,坐标与图形变化﹣平移【分析】根据平移的特性写出点Q的坐标,由点P、Q均在反比例函数y=的图象上,即可得出k=2n=3(n﹣1),解得即可.解:∵点P的坐标为(2,n),则点Q的坐标为(3,n﹣1),依题意得:k=2n=3(n﹣1),解得:n=3,∴k=2×3=6,故答案为:6.【点评】本题考查了反比例函数图象上点的坐标特征、反比例函数系数k的几何意义,解题的关键:由P点坐标表示出Q点坐标.14.(2019年湖南省邵阳市)如图,在平面直角坐标系中,点A的坐标为(﹣4,2),反比例函数y=(x<0)的图象经过线段OA的中点B,则k=.【考点】反比例函数的性质,反比例函数图象上点的坐标特征【分析】已知A(﹣4,2),B是OA的中点,根据平行线等分线段定理可得点B的坐标,把B的坐标代入关系式可求k的值.解:如图:∵AC∥BD,B是OA的中点,∴OD=DC同理OF=EF∵A(﹣4,2)∴AC=2,OC=4∴OD=CD=2,BD=OF=EF=1,∴B(﹣2,1)代入y=得:∴k=﹣2×1=﹣2故答案为:﹣2【点评】考查平行线等分线段定理,点的坐标与相应线段的长度的相互转化等知识,求出点B坐标,代入求k的值是本题的基本方法.15.(2019年湖南省郴州市)某商店今年6月初销售纯净水的数量如下表所示:日期1234数量(瓶)120125130135观察此表,利用所学函数知识预测今年6月7日该商店销售纯净水的数量约为瓶.【考点】一次函数的应用【分析】这是一个一次函数模型,设y=kx+b,利用待定系数法即可解决问题,解:这是一个一次函数模型,设y=kx+b,则有,解得,∴y=5x+115,当x=7时,y=150,∴预测今年6月7日该商店销售纯净水的数量约为150瓶,故答案为150.【点评】本题考查
三七文档所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
本文标题:2019年湖南省中考数学精编精练4:一次函数与反比例函数(解析卷)
链接地址:https://www.777doc.com/doc-5600804 .html