您好,欢迎访问三七文档
当前位置:首页 > 机械/制造/汽车 > 机械/模具设计 > 机械结构有限元分析第三章习题
习题三3.1解释基本概念:位移插值函数、位移模式、单元刚度矩阵及其刚度系数、单元刚度矩阵的对称性和奇异性、结构刚度矩阵的集成、单元载荷向量、有限元解的收敛准则、位移解的下限性质。答:位移插值函数:建立以单元结点位移表示的单元内各点位移的表达式,选择一个简单的单元位移模式,单元内各点的位移可按此位移模式由单元结点位移通过插值而获得。位移模式:单元位移模式的一般表达式为{d(x,y)}=[f(x,y)]a单元刚度矩阵及其刚度系数:eekRδ=是表示单元的结点力和结点位移之间关系的刚度方程,k就是单元刚度矩阵DBtdxdyBkT∫∫=单元刚度矩阵的对称性和奇异性:对称性是指第j个单位位移分量引起的第i个结点力分量等于由第i个单位位移分量引起的第j个结点力分量。奇异性:指单元刚度矩阵不存在逆矩阵。结构刚度矩阵的集成:对N个经推广的单元刚度矩阵进行求和,叠加,得到结构整体刚度矩阵。有限元解的收敛准则:满足三个条件1、位移模式包含单元的刚体位移2、位移模式必须能包含单元的常应变3、位移模式在单元内要连续,且在相邻单元之间的位移必须协调位移解的下限性质:对于一个给定的位移模式,其刚度系数是数值比精确值要大。所以在给定的载荷之下,有限元计算模型的变形将比实际结构的变形小。因此细分单元网格,位移近似解将由下方收敛于精确解,即得到真实解的下界。3.11如图所示的平面三角形单元,厚度cmt1=,弹性模量MPaE5100.2×=泊松比3.0=µ。试求插值函数矩阵N,应变矩阵B,应力矩阵S,单元刚度矩阵eK,并验证eK的奇异性。解:因为1、2、3点的坐标为(2,2)、(10,2)、(2,6)可知道mymx2121102,102−−×=×=;mymx2222102,1010−−×=×=;mymx2323106,102−−×=×=;)(21)],([1ycxbaAyxfNiii++∆==−平面三角形单元的面积3262121012212==∆24233211056myxyxa−×=−=;myyb2321104−×−=−=;mxxc2231108−×−=−=;2431132108myxyxa−×−=−=;myyb2132104−×=−=;0312=−=xxc;24122131016myxyxa−×−=−=;0213=−=yyb;mxxc2123108−×=−=;可得位移形状函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧+−=++=+−=++=−−=++=yycxbaANxycxbaANyxycxbaAN4121)(218141)(21418147)(21333322221111又因为插值函数矩阵INN1[=IN2]3IN⎥⎦⎤⎢⎣⎡=1001I可得⎢⎣⎡=01NN10N02N20N03N⎥⎦⎤30N⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+−+−−−=04121081410418147yxyxTyxyx⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤+−+−−−41210814104181470应变矩阵⎢⎢⎢⎣⎡∆=11021cbB110bc220cb220bc330cb⎥⎥⎥⎦⎤330bc⎢⎢⎢⎣⎡−−×=804103212480−−004400800⎥⎥⎥⎦⎤080⎢⎢⎢⎣⎡−−×=20110812120−−001100200⎥⎥⎥⎦⎤020又因为弹性矩阵⎢⎢⎢⎢⎣⎡−=0112µµED01µ⎥⎥⎥⎥⎥⎦⎤−2)1(00µ⎢⎢⎢⎣⎡−×=03.013.01100.2211013.0⎥⎥⎥⎦⎤35.000⎢⎢⎢⎣⎡×=03.0191.0100.211013.0⎥⎥⎥⎦⎤35.000所以得应力矩阵BDS⋅=⎢⎢⎢⎣⎡−−−×=9231.18242.07473.2100.1129615.04945.56484.1−−−08242.07473.29615.0009231.100⎥⎥⎥⎦⎤04945.56484.1单元刚度矩阵tASBKTe⋅⋅⋅=⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡−−−−×=3297.07692.03846.05495.07143.03187.1100.191978.23846.01923.03297.03901.27143.0−−−−3297.0005495.03297.05495.0−−03846.01923.001923.03846.0−−07692.03846.003846.07692.0−−⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤−−1978.2003297.01978.23297.0因为0=eK,所以eK为奇异矩阵3.12求如图所示三角形单元的插值函数矩阵和应变矩阵。设mmu0.21=,mmv2.11=,mmu4.22=,mmv2.12=,mmu1.23=,mmv4.13=,弹性模量MPaE5100.2×=,泊松比3.0=µ,求单元内的应变和应力,并求出主应力及其方向。若单元在jm边作用有线性分布的面载荷(x方向),求结点载荷向量。(b)解:因为i、j、m点的坐标为(2,2)、(6,3)、(5,6)可知道mymxii33102,102−−×=×=;mymxjj33103,106−−×=×=;mymxmm33106,105−−×=×=;得261021myxyxajmmji−×=−=;myybmji3103−×−=−=;mxxcjmi3101−×−=−=;26102myxyxamiimj−×−=−=;myybimj3104−×=−=;mxxcmij3103−×−=−=;26106myxyxaijjim−×−=−=;myybjim3101−×−=−=;mxxcijm3104−×=−=;平面三角形单元的面积1112=∆mjixxx261013myyymji−×=位移形状函数)(21)],([1ycxbaAyxfNiii++∆==−可得位移形状函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧+−−=++=−+−=++=−−=++=yxycxbaANyxycxbaANyxycxbaANmmmmjjjjiiii134000131000136)(21133000134000132)(211310001330001321)(21插值函数矩阵⎢⎣⎡=0iNNiN00jNjN00mN⎥⎦⎤mN0⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+−−−+−−−=0134000131000136013300013400013201310001330001321yxyxyxTyxyxyx⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤+−−−+−−−1340001310001360133000134000132013100013300013210应变矩阵⎢⎢⎢⎣⎡∆=iicbB021iibc0jjcb0jjbc0mmcb0⎥⎥⎥⎦⎤mmbc0⎢⎢⎢⎣⎡−−×=103101313310−−304−430−401−⎥⎥⎥⎦⎤−140三角形单元的6个结点位移分量用列阵表示为}{{0.2100.1,,,,,3332211321−×==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=Tevuvuvuδδδδ2.14.22.11.2}T4.1单元内任一点的应变列阵为{1154.0321=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==δδδδεBBe0615.0}T0769.0−弹性矩阵⎢⎢⎢⎣⎡−=0112µµED01µ⎥⎥⎥⎦⎤−2/)1(00µ⎢⎢⎢⎣⎡×=03.0191.0100.211013.0⎥⎥⎥⎦⎤35.000单元内任一点的应力列阵为{9417.2100.110×==εσD1133.2}T5917.0−22minmax22xyyxyxτσσσσσσ+⎟⎟⎠⎞⎜⎜⎝⎛−±+=⎭⎬⎫()MPa⎩⎨⎧=−+⎟⎠⎞⎜⎝⎛−±+=7994.12286.35917.021133.29417.221133.29417.222yxxyσστα−−=22tan0()MPa4285.11133.29417.25917.02=−−×−=3.13二维单元在x,y坐标平面内平移到不同位置,单元刚度矩阵相同吗?在平面旋转180°时怎样?单元旋转后怎样?单元做上述变化时,应力矩阵S如何变化?答:二维单元在x,y坐标平面内平移到不同位置单元刚度矩阵相同应力矩阵S不变;单元旋转后单元刚度矩阵应力矩阵S都变化。3.14如图所示的一个悬梁,载荷均匀分布在自由端截面上,采用图示简单网格,求各结点的位移.设31=µ,梁的厚度为t.解:结点编号1234单元号12X坐标0220相邻结点12Y坐标00112344平面三角形单元的面积1112=∆421xxx24212101021001myyy==对于单元1,三个结点对应的整体编码(i,j,m)=(1,2,4)myxyxa224421=−=;myyb1421−=−=;mxxc2241−=−=;041142=−=yxyxa;myyb1142=−=;0412=−=xxc;012214=−=yxyxa;0214=−=yyb;mxxc2124=−=;应变矩阵⎢⎢⎢⎣⎡∆=11)1(021cbB110bc220cb220bc440cb⎥⎥⎥⎦⎤440bc⎢⎢⎢⎣⎡−−=20121120−−001100200⎥⎥⎥⎦⎤020弹性矩阵⎢⎢⎢⎣⎡−=0112)1(µµED01µ⎥⎥⎥⎦⎤−2/)1(00µ⎢⎢⎢⎣⎡−=03/11)31(12E013/1⎥⎥⎥⎦⎤−2/)3/11(00⎢⎢⎢⎣⎡=08/38/9E08/98/3⎥⎥⎥⎦⎤8/300应力矩阵)1()1()1(BDS⋅=⎢⎢⎢⎣⎡−−−=3750.01875.05625.0E1875.01250.13750.0−−−01875.05625.01875.0003750.000⎥⎥⎥⎦⎤01250.13750.0单元刚度矩阵tASBKT⋅⋅⋅=)1()1()1(⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡−−−−=1875.03750.01875.02813.03750.06563.0Et1250.11875.00938.01875.02188.13750.0−−−−1875.0002813.01875.02813.0−−01875.00938.000938.01875.0−−03750.01875.001875.03750.0−−⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤−−1250.1001875.01250.11875.0对于单元2,三个结点对应的整体编码(i,j,m)=(2,3,4)0432=−=yyb;mxxc2342−=−=;myyb1243=−=;2423=−=xxc;myyb1324−=−=;0234=−=xxc;平面三角形单元的面积1112=∆421xxx24212101021001myyy==应变矩阵⎢⎢⎢⎣⎡∆=22)2(021cbB220bc330cb330bc440cb⎥⎥⎥⎦⎤440bc⎢⎢⎢⎣⎡−=20021020−201120001−⎥⎥⎥⎦⎤−100弹性矩阵⎢⎢⎢⎣⎡−=0112)2(µµED01µ⎥⎥⎥⎦⎤−2/)1(00µ⎢⎢⎢⎣⎡=08/38/9E08/98/3⎥⎥⎥⎦⎤8/300应力矩阵)2()2()2(BDS⋅=⎢⎢⎢⎣⎡−=3750.000E01250.13750.0−−3750.01875.05625.01875.01250.13750.001875.05625.0−−⎥⎥⎥⎦⎤−1875.000单元刚度矩阵tASBKT⋅⋅⋅=)2()2()2(⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡−−=1875.001875.03750.003750.0Et01875.01250.11875.01250.10−−1875.02813.03750.06563.01875.03750.0−−−−0938.01875.02188.13750.01250.11875.0−−−−02813.01875.02813.01875.00−−⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤−−0938.000938.01875.001875.0总刚度矩阵⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡−−−−=1875.03750.0001875.02813.03750.06563.0EtK1250.11875.0000938.01875.02188.13750.0−−−−3750.001875.03750.006563.01875.02813.0−−−−03750.01250.11875.02188.1
本文标题:机械结构有限元分析第三章习题
链接地址:https://www.777doc.com/doc-5561698 .html