您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 经营企划 > 第一章+行列式+目标检测练习题
1练习一行列式的概念、基本性质一、多项选择题1.下列行列式中()的值必为零。(A)行列式中有两行对应元素之和与另一行元素对应成比例。(B)行列式中有两行对应元素之和为零。(C)行列式中有两行含有相同的公因子。(D)行列式中有一行与另一列对应元素成比例。2.设ijA,1,2,3ij是三阶行列式中元素ija的代数余子式,则()时,1312323330jjjaAaAaA(A)1j(B)2j(C)3j(D)1j或2j3.如果1333231232221131211aaaaaaaaaD,则3332313123222121131211111242424aaaaaaaaaaaaD等于()(A)8(B)12(C)24(D)44.01221kk的充要条件是()(A)1k(B)3k(C)1k且3k(D)1k或3k5.下列行列式中值必为零的有()(A)00021221112nnnnaaaaaa.(B)0000,13,12,11,122322211131211nnnnnnnaaaaaaaaaaaa.(C)n阶行列式中零元素的个数多于n个.(D)n阶行列式中某两行元素对应成比例.2二、计算1.41234214334124321D2.nDn111211113.dcbacbabaadcbacbabaadcbacbabaadcbaD3610363234232434.00004xyzxzyzyxzyxD5.0869168034763053945021673205D4三、证明0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222ddddccccbbbbaaaa练习二行列式展开定理和克莱姆法则一、多项选择题51.如果方程组050403zykxzyzkyx有非零解,则k满足()(A)0k(B)1k(C)1k(D)3k2.当k满足什么条件时,方程组02020zykxzkyxzkx仅有零解。()(A)0k(B)1k(C)2k(D)2k3.行列式44332211400000000ababbabaD的值等于()(A)43214321bbbbaaaa(B)43214321bbbbaaaa(C)))((43432121bbaabbaa(D)))((41413232bbaabbaa4.设行列2235007022220403D,则第四行各元素余子式之和为()(A)0(B)14(C)28(D)285.已知A和B都为4阶行列式且4,4BA,则BA等于()(A)0(B)4(C)16(D)不能确定二、计算61.123211000001000000000001000001aaaaaaxxxxxDnnnn2.111)()1()()1()()1(1111naaanaaanaaaDnnnnnnn73.abbababaDn0000000000000000三、用克莱姆法则解下列方程组1.01123253224254321432143214321xxxxxxxxxxxxxxxx82.求三次多项式,fx使满足10,14,23,316ffff。四、证明bababaabbabaabbaabbaDnnn1110000000010001000,ba.(提示:可用数学归纳法证明)
本文标题:第一章+行列式+目标检测练习题
链接地址:https://www.777doc.com/doc-5557620 .html