您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 北师大版高中数学2-2第二章《变化率与导数》导数的概念 课件
金太阳新课标资源网wx.jtyjy.com北师大版高中数学选修2-2第二章《变化率与导数》一、教学目标:1、知识与技能:通过大量的实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数。2、过程与方法:①通过动手计算培养学生观察、分析、比较和归纳能力②通过问题的探究体会逼近、类比、以已知探求未知、从特殊到一般的数学思想方法。3、情感、态度与价值观:通过运动的观点体会导数的内涵,使学生掌握导数的概念不再困难,从而激发学生学习数学的兴趣.二、教学重点:了解导数的概念及求导数的方法。教学难点:理解导数概念的本质内涵三、教学方法:探析归纳,讲练结合四、教学过程导数的概念•在高台跳水运动中,平均速度不一定能反映运动员在某一时刻的运动状态,需要用瞬时速度描述运动状态。我们把物体在某一时刻的速度称为瞬时速度.又如何求瞬时速度呢?平均变化率近似地刻画了曲线在某一区间上的变化趋势.如何精确地刻画曲线在一点处的变化趋势呢?105.69.4)(2ttth求:从2s到(2+△t)s这段时间内平均速度tthththv9.41.13)2()2(△t0时,在[2+△t,2]这段时间内△t0时,在[2,2+△t]这段时间内1.139.4tv1.139.4tv051.13v当△t=–0.01时,149.13v当△t=0.01时,0951.13v当△t=–0.001时,1049.13v当△t=0.001时,09951.13v当△t=–0.0001时,10049.13v当△t=0.0001时,099951.13v△t=–0.00001,100049.13v△t=0.00001,0999951.13v△t=–0.000001,1000049.13v△t=0.000001,…………平均变化率近似地刻画了曲线在某一区间上的变化趋势.如何精确地刻画曲线在一点处的变化趋势呢?105.69.4)(2ttth当△t趋近于0时,即无论t从小于2的一边,还是从大于2的一边趋近于2时,平均速度都趋近与一个确定的值–13.1.1.13)2()2(lim0ththt从物理的角度看,时间间隔|△t|无限变小时,平均速度就无限趋近于t=2时的瞬时速度.因此,运动员在t=2时的瞬时速度是–13.1.v表示“当t=2,△t趋近于0时,平均速度趋近于确定值–13.1”.v从2s到(2+△t)s这段时间内平均速度tthv9.41.13探究:1.运动员在某一时刻t0的瞬时速度怎样表示?2.函数f(x)在x=x0处的瞬时变化率怎样表示?5.68.9)5.68.99.4(lim)5.68.9()(9.4lim)()(lim000020000ttttttttthtthttt定义:函数y=f(x)在x=x0处的瞬时变化率是xfxxfxxfxxlim)()Δ(lim0000称为函数y=f(x)在x=x0处的导数,记作.)()Δ(lim)(0000xxfxxfxfx)(0xf或,即0|xxy;)().1(000其导数值一般也不相同的值有关,不同的与xxxf的具体取值无关。与xxf)(0一概念的两个名称。瞬时变化率与导数是同).2(定义:函数y=f(x)在x=x0处的瞬时变化率是xfxxfxxfxxlim)()Δ(lim0000称为函数y=f(x)在x=x0处的导数,记作.)()Δ(lim)(0000xxfxxfxfx)(0xf或,即0|xxy由导数的定义可知,求函数y=f(x)的导数的一般方法:1.求函数的改变量2.求平均变化率3.求值);()(00xfxxff.lim)(00xfxfx;)()(00xxfxxfxf一差、二化、三极限3mxxfy3)()(xfy)2(f例1、一条水管中流过的水量y(单位:)是时。求函数在x=2处的导数,并解释它的间x(单位:s)的函数实际意义。解:当x从2变到2+Δx时,函数值从3×2变到3(2+Δx),函数值y关于x的平均变化率为3323)2(3)2()2(xxxxxfxf(3m/s).当x趋于2,即Δx趋于0时,平均变化率趋于3,所以(/s).3)2(f3m)2(f3m导数表示当x=2s时水流的瞬时变化率,即水流的瞬时速度。也就是如果水管的中的水以x=2s时的瞬时速度流动的话,每经过1s,水管中流过的水量为3。)(xfy)(xfy4)1(f5.3)3(f例2、一名食品加工厂的工人上班后开始连续工作,生产的食品量y(单位:kg)是其工作时间x(单位:h)的函数。假设函数在x=1和x=3处的导数分别为和,试解释它们的实际意义。4)1(f5.3)3(f解:表示该工人工作1h的时候,其生产速度(即工作效率)为4kg/h,也就是说,如果保持这一生产速度,那么他每时可以生产4kg的食品。表示该工人上班后工作3h的时候,其生产速度为3.5kg/h,也就是说,如果保持这一生产速度,那么他每时可以生产出3.5kg/h的食品。)(tfy)(tfy5.1)10(f6.0)100(f例3、服药后,人体血液中药物的质量浓度y(单位:μg/mL)是时间t(单位:min)的函数,假设函数在t=10和t=100处的和导数分别为,试解释它们的实际意义。5.1)10(f6.0)100(f解:表示服药后10min时,血液中药物的质量浓度上升的速度为1.5μg/(mL·min)。也就是说,如果保持这一速度,每经过1min,血液中药物的质量浓度将上升1.5μg/(mL·min)。表示服药后100min时,血液中药物的质量浓度下降的速度为-0.6μg/(mL·min)。也就是说,如果保持这一速度,每经过1min,血液中药物的质量浓度将下降-0.6μg/(mL·min)。课堂练习:1、2、课本33P练习:1、2.小结:1、瞬时速度的变化率的概念;2、导数的概念;3、利用导数的定义求函数的导数的方法步骤:00001()()23limxyfxxfxyxyx、求函数的变化率、求函数的平均变化率、求极限作业:课本37P习题2-2中A组2、3五、教后反思:
本文标题:北师大版高中数学2-2第二章《变化率与导数》导数的概念 课件
链接地址:https://www.777doc.com/doc-5512113 .html