您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 三角函数所有基础知识点
学案任意角的三角函数导学目标:1.了解任意角的概念.2.了解弧度制的概念,能进行弧度与角度的互化.3.理解任意角的三角函数(正弦、余弦、正切)的定义.自主梳理1.任意角的概念角可以看成平面内一条射线OA绕着端点从一个位置旋转到另一个位置OB所成的图形.旋转开始时的射线OA叫做角的________,射线的端点O叫做角的________,旋转终止位置的射线OB叫做角的________,按______时针方向旋转所形成的角叫做正角,按______时针方向旋转所形成的角叫做负角.若一条射线没作任何旋转,称它形成了一个________角.(1)象限角使角的顶点与原点重合,角的始边与x轴的非负半轴重合,角的终边落在第几象限,就说这个角是__________角.(2)象限界角(即终边在坐标轴上的角)终边在x轴上的角表示为____________________;终边在y轴上的角表示为__________________________________________;终边落在坐标轴上的角可表示为____________________________.(3)终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合______________________或__________________________,前者α用角度制表示,后者α用弧度制表示.(4)弧度制把长度等于________长的弧所对的__________叫1弧度的角.以弧度作为单位来度量角的单位制,叫做________,它的单位符号是________,读作________,通常略去不写.(5)度与弧度的换算关系360°=______rad;180°=____rad;1°=________rad;1rad=_______________≈57.30°.(6)弧长公式与扇形面积公式l=________,即弧长等于_________________________________________________.S扇=________=____________.2.三角函数的定义任意角的三角函数定义:设α是一个任意角,它的终边与单位圆交于点P(x,y),那么①____叫做α的正弦,记作sinα,即sinα=y;②____叫做α的余弦,记作cosα,即cosα=x;③________叫做α的正切,记作tanα,即tanα=yx(x≠0).(1)三角函数值的符号各象限的三角函数值的符号如下图所示,三角函数正值歌:一全正,二正弦,三正切,四余弦.(2)三角函数线下图中有向线段MP,OM,AT分别表示__________,__________________和____________.1.始边顶点终边逆顺零(1)第几象限(2){α|α=kπ,k∈Z}α|α=kπ+π2,k∈Zα|α=kπ2,k∈Z(3){β|β=α+k·360°,k∈Z}{β|β=α+2kπ,k∈Z}(4)半径圆心角弧度制rad弧度(5)2πππ180180π°(6)|α|·r弧所对的圆心角(弧度数)的绝对值与半径的积12lr12|α|r22.①y②x③yx(2)α的正弦线α的余弦线α的正切线学案同角三角函数的基本关系式及诱导公式导学目标:1.能利用单位圆中的三角函数线推导出π2±α,π±α的正弦、余弦、正切的诱导公式.2.理解同角三角函数的基本关系式:sin2x+cos2x=1,sinxcosx=tanx.自主梳理1.同角三角函数的基本关系(1)平方关系:____________________.(2)商数关系:______________________________.2.诱导公式(1)sin(α+2kπ)=________,cos(α+2kπ)=__________,tan(α+2kπ)=__________,k∈Z.(2)sin(π+α)=________,cos(π+α)=________,tan(π+α)=________.(3)sin(-α)=________,cos(-α)=__________,tan(-α)=________.(4)sin(π-α)=__________,cos(π-α)=__________,tan(π-α)=________.(5)sinπ2-α=________,cosπ2-α=________.(6)sinπ2+α=__________,cosπ2+α=____________________________________.3.诱导公式的作用是把任意角的三角函数转化为锐角三角函数,一般步骤为:上述过程体现了化归的思想方法.答案自主梳理1.(1)sin2α+cos2α=1(2)sinαcosα=tanα2.(1)sinαcosαtanα(2)-sinα-cosαtanα(3)-sinαcosα-tanα(4)sinα-cosα-tanα(5)cosαsinα(6)cosα-sinα学案三角函数的图象与性质导学目标:1.能画出y=sinx,y=cosx,y=tanx的图象,了解三角函数的周期性.2.理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值以及与x轴的交点等),理解正切函数在区间-π2,π2内的单调性.自主梳理1.三角函数的图象和性质函数y=sinxy=cosxy=tanx图象定义域值域周期性奇偶性单调性在______________________上增,在__________________________________上减在__________________________上增,在______________________________上减在定义域的每一个区间________________________________内是增函数2.正弦函数y=sinx当x=____________________________________时,取最大值1;当x=____________________________________时,取最小值-1.3.余弦函数y=cosx当x=__________________________时,取最大值1;当x=__________________________时,取最小值-1.4.y=sinx、y=cosx、y=tanx的对称中心分别为____________、___________、______________.5.y=sinx、y=cosx的对称轴分别为______________和____________,y=tanx没有对称轴.答案自主梳理1.RR{x|x≠kπ+π2,k∈Z}[-1,1][-1,1]R2π2ππ奇函数偶函数奇函数[2kπ-π2,2kπ+π2](k∈Z)[2kπ+π2,2kπ+32π](k∈Z)[2kπ-π,2kπ](k∈Z)[2kπ,2kπ+π](k∈Z)(kπ-π2,kπ+π2)(k∈Z)2.2kπ+π2(k∈Z)2kπ-π2(k∈Z)3.2kπ(k∈Z)2kπ+π(k∈Z)4.(kπ,0)(k∈Z)kπ+π2,0(k∈Z)kπ2,0(k∈Z)5.x=kπ+π2(k∈Z)x=kπ(k∈Z)学案函数y=Asin(ωx+φ)的图象及三角函数模型的简单应用导学目标:1.了解函数y=Asin(ωx+φ)的物理意义;能画出y=Asin(ωx+φ)的图象,了解参数A,ω,φ对函数图象变化的影响.2.了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.自主梳理1.用五点法画y=Asin(ωx+φ)一个周期内的简图用五点法画y=Asin(ωx+φ)一个周期内的简图时,要找五个特征点.如下表所示.XΩx+φy=Asin(ωx+φ)0A0-A02.图象变换:函数y=Asin(ωx+φ)(A0,ω0)的图象可由函数y=sinx的图象作如下变换得到:(1)相位变换:y=sinxy=sin(x+φ),把y=sinx图象上所有的点向____(φ0)或向____(φ0)平行移动__________个单位.(2)周期变换:y=sin(x+φ)→y=sin(ωx+φ),把y=sin(x+φ)图象上各点的横坐标____(0ω1)或____(ω1)到原来的________倍(纵坐标不变).(3)振幅变换:y=sin(ωx+φ)→y=Asin(ωx+φ),把y=sin(ωx+φ)图象上各点的纵坐标______(A1)或______(0A1)到原来的____倍(横坐标不变).3.当函数y=Asin(ωx+φ)(A0,ω0),x∈(-∞,+∞)表示一个振动量时,则____叫做振幅,T=________叫做周期,f=______叫做频率,________叫做相位,____叫做初相.函数y=Acos(ωx+φ)的最小正周期为____________.y=Atan(ωx+φ)的最小正周期为________.答案自主梳理1.0-φωπ2-φωπ-φω3π2-φω2π-φω0π2π3π22π2.(1)左右|φ|(2)伸长缩短1ω(3)伸长缩短A3.A2πω1Tωx+φφ2π|ω|π|ω|学案两角和与差的正弦、余弦和正切公式导学目标:1.会用向量数量积推导出两角差的余弦公式.2.能利用两角差的余弦公式导出两角差的正弦、正切公式.3.能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式.4.熟悉公式的正用、逆用、变形应用.自主梳理1.(1)两角和与差的余弦cos(α+β)=_____________________________________________,cos(α-β)=_____________________________________________.(2)两角和与差的正弦sin(α+β)=_____________________________________________,sin(α-β)=_____________________________________________.(3)两角和与差的正切tan(α+β)=_____________________________________________,tan(α-β)=_____________________________________________.(α,β,α+β,α-β均不等于kπ+π2,k∈Z)其变形为:tanα+tanβ=tan(α+β)(1-tanαtanβ),tanα-tanβ=tan(α-β)(1+tanαtanβ).2.辅助角公式asinα+bcosα=a2+b2sin(α+φ),其中cosφ=,sinφ=,tanφ=ba,角φ称为辅助角.答案自主梳理1.(1)cosαcosβ-sinαsinβcosαcosβ+sinαsinβ(2)sinαcosβ+cosαsinβsinαcosβ-cosαsinβ(3)tanα+tanβ1-tanαtanβtanα-tanβ1+tanαtanβ2.aa2+b2ba2+b2学案简单的三角恒等变换导学目标:1.能推出二倍角的正弦、余弦、正切公式,并熟练应用.2.能运用两角和与差的三角公式进行简单的恒等变换.自主梳理1.二倍角的正弦、余弦、正切公式(1)sin2α=________________;(2)cos2α=______________=________________-1=1-________________;(3)tan2α=________________________(α≠kπ2+π4且α≠kπ+π2).2.公式的逆向变换及有关变形(1)sinαcosα=____________________⇒cosα=sin2α2sinα;(2)降幂公式:sin2α=________________,cos2α=________________;升幂公式:1+cosα=________________,1
本文标题:三角函数所有基础知识点
链接地址:https://www.777doc.com/doc-5486320 .html