您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 工程监理 > 工程流体力学(英文版)第三章.pdf
Chapter3ConceptsandBasicEquationofFluidsinmotion(onedimension,idealfluids)Contents1.MethodstoStudyFluidsinMotion2.FlowClassification3.Pathline()andStreamline()4.Streamtube()andDischarge()5.ContinuityEquationforSteadyFlowinaConduit6.MotionDifferentialEquationforIdeal1-DFlow&TheBernoulliEquationAlongaStreamlineContents7.DifferentialEquationforIdealFlowalongNormalLine8.TheBernoulliEquationfor1-Dpipeflow9.ApplicationofTheBernoulliEquation10.TheLinear-Momentum()EquationandMoment-of-Momentum()EquationforIdealFlow3.1MethodstoStudyFluidsinMotion1.LagrangianApproach()2.EulerianApproach()3.SystemandControlVolume4.EulerianAccelerationA′•A•••B′Bviewpoints:aindividualfluidparticlebcertainpointinspaceLagrangianDescriptionofMotionisthedescriptionthateveryfluidpartideinflowfieldisobservedasafunctionoftime.Spacecoordinates===),,,(),,,(),,,(tcbazztcbayytcbaxx1.LagrangianApproachA′•A•••B′BEulerApproachisthedescriptionthatthemotionfactorsofeveryspacepointinflowfieldareobservedasafunctionoftime.——flowfielddescription.Flowfieldmotionfactorsarethecontinuousfunctionsoftimeandspacex,y,zEulerianDescriptionisutilizedwidelyinengineering.2.EulerianApproach(x,y,z)-----EulerianVariables()()(),,,,,,,,,xyztppxyztVVxyzt===ρρ3.System(andControlVolumeDefinitionofaSystemAsystemreferstoaspecificmassoffluidwithintheboundariesdefinedbyaclosedsurface.ShapemaychangemassnochangeAcontrolvolumereferstoafixedregioninspace,whichdoesnotmoveorchangeshape.Thesurfacesurroundingthecontrolvolumeiscalledcontrolsurface3.System(andControlVolumeShapenochangemassmaychangeDefinitionofaControlVolume1122.Euleriancceleration(),,,Vxyztt:position:x,y,ztt+δ:position:velocity:(),,xxyyzz+++δδδ(),,,tVxxyyzzt++++δδδδvelocity:yxz0••t(x,y,z)()()()()000,,,,,,lim1lim,,,,,,limxtttuxxyyzzttuxyztatuuuuuxyztxyztuxyzttxyztutuxuyuzttxtytzt→→→++++−=∂∂∂∂=++++−∂∂∂∂ ∂∂∂∂=+++∂∂∂∂ δδδδδδδδδδδδδδδδδδδδδ000lim,lim,limtttyxzuvwttt→→→===δδδδδδδδδyxz0••t(x,y,z)soddxuuuuuauvwttxyz∂∂∂∂==+++∂∂∂∂andddddddxyzuuuuuauvwttxyzvvvvvauvwttxyz∂∂∂∂==+++∂∂∂∂∂∂∂∂==+++∂∂∂∂∂∂∂∂==+++∂∂∂∂or:()VaVVt∂=+⋅∇∂ijkxyz∂∂∂∇=++∂∂∂SimilarlyAccelerationofparticlesiscomposedoftwoparts1LocalAccelerationthechangeofvelocityateverypointwithtime.2ConvectiveAccelerationthechangeofvelocitywithpositionddpppppuvwttxyz∂∂∂∂=+++∂∂∂∂dduvwttxyzρρρρρ∂∂∂∂=+++∂∂∂∂Fordensityandpressure:Generalform:ddVtt∂=+⋅∇∂.TheTotalDerivativeexample3.1velocityis:2232Vxyiyjzk=−+(m/s),Whatistheaccelerationofpoint(3,1,2).solution:2220(2)(3)027xuuuuauvwxyxyyxmstxyz∂∂∂∂=+++=+⋅+−⋅+=∂∂∂∂22200(3)(3)209yvvvvauvwxyyzmstxyz∂∂∂∂=+++=+⋅+−⋅−+⋅=∂∂∂∂22200(3)02464z∂∂∂∂=+++=+⋅+−⋅+⋅=∂∂∂∂So,theaccelerationofpoint(3,1,2):27964aijk=++3.2ClassificationofFluidFlowClassificationofFluidFlowBasedontheCharacteristicofFluidBasedontheStateofFlowBasedontheNumberofSpaceVariables1.BasedontheCharacteristicsofFluidIdealflowandViscousflow0orμ=≠Incompressibleflowandcompressiblefloworconstρ=≠2.BasedontheStateofFlowSteadyflowandunsteadyflow0ort∂=≠∂Rotational()flowandirrotational()flowLaminarflow()andturbulentflow()Subsonicflow()Transonicflow()andsupersonicflow()Uniformflowandnon-uniformflow0Vors∂=≠∂3.BasedontheNumberofSpaceVariablesOnedimensionalflow()Twodimensionalflow()Threedimensionalflow()4.Steadyflowandunsteadyflowistheflowwhosemotionfactorsdon′tchangewithtime.Thatis:SteadyFlow(),,,VVxyz=0Vt∂=∂H=CUnsteadyflowistheflowthatatleastoneofitsmotionfactorschangeswithtime.ThatisunsteadyFlow(),,,VVxyzt=0Vt∂≠∂HHH51-D,2-Dand3-DFlowOne-dimensionalFlow:(2)cross-sectionalaveragevaluesSfluidmotionfactorsarefunctionofaspacecoordinate.(1)Idealflow.(3)motionfactorsarefunctionsofcurvedcoordinatess.(,)xtϕϕ=(,)xtϕϕ=(,)stϕϕ=(,)stϕϕ=Two-dimensionalFlow:fluidmotionfactorsarefunctionoftwospacecoordinates.(Notonlylimitedtorectangularcoordinates).Fluidflow′smotionfactorsarefunctionsofthreespacecoordinates.Forexample:Waterflowinanaturalriverwhosecrosssectionshapeandmagnitudechangealongthedirectionofflow;waterflowsaroundtheship.Three-dimensionalFlow:Apathlineisthetraceafterasingleparticletravelsinafieldofflowoveraperiodoftime.(1).DefinitionKinescope1Kinescope23.3Pathline()andStreamline()1.Pathline(2)EquationofPathlineuvwarefunctionsofbothtimetandspace(xyz).Heretisanindependentvariabledydxdzuvwdt===AStreamlineisacurvethatshowthedirectionofanumberofparticlesattheatthesameinstantoftime.Thecurveindicatesthevelocityvectorsofanypointsoccupyingonthestreamline.Kinescope2.Streamline1.DefinitionaVbVcVdVeV2EquationofStreamlineSelectpointAinstreamline,dsisadifferentialarclength,uisthevelocityatpointAdsdxidyjdzk=++dsuAVuivjwk=++Directionalcosinebetweenvelocityvectorandcoordinatescos(,)vVyV=cos(,)uVxV=cos(,)wVzV=Directionalcosinebetweendsandcoordinatescos(,)dxdsxds=cos(,)dydsyds=cos(,)dzdszds=//dsVdydxdzuvw==——StreamlineequationSo,velocityvectoristangenttostreamlinecos(,)cos(,)dsxVx=cos(,)cos(,)dsyVy=cos(,)cos(,)dszVz=udxVds=vdyVds=wdzVds=uvwVdxdydzds===3CharacterofStreamlinebAtthesameinstantoftime,streamlinesca
三七文档所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
本文标题:工程流体力学(英文版)第三章.pdf
链接地址:https://www.777doc.com/doc-5311017 .html