您好,欢迎访问三七文档
FaFaFaMMFFFFFFFFFFFFFFFFFFFFFFAAAyxyxyyxx41RRRRRRR2R2RR31R42R22)(45),(22222),cos(22222),cos(22)()(22)1FiFjFiF可见点简化,向解:简化。、边长中点该力系分别向中心点。试将的正方形板上,且一力系作用在边长为例BAFFFFFa43211-4ABF1F2F3F4Oyx。任一点结果都是合力作用线上点。因此,简化至合力,通过故合力同前,主矢点简化,向RRR34R022)()1FFFFFBFaFaMMBBBABOyxF'RMAABOyxFR。坐标设置如图。受力图,平面一般力系除约束,画对象以整个系统为对象,解解:)1例补4-1小型起重机自重G=5kN,起吊重量P=10kN。求轴承A、B处的约束力。kN7)7(00kN7510355303150)(kN1500)3()2ABxABxxAABByByyFFFFFPGFPGFMPGFPGFFF个独立方程平面力系可列列方程,解方程*求约束力的步骤。*投影轴的设置,矩心的选取,方法的多样性。*中间量的引用,负值的意义。3m5m1mCDAGPBFAFBxFByxy。平面一般力系。、、定端约束为均布载荷的合力。固,、为对象,主动力以梁解:AAyAxqMqlFMABFFF)1定端约束力。,所受载荷如图,求固一端固定的悬臂梁长例lAB4-4FMqABFqlFFFFFFFFFqllFMlFlFMMlFlFMMMqAyqAyyAxxqAqAA00002/2/02/03)22个方程可列*固定端约束力的画法。*均布载荷的简化和应用。*力偶的投影和求矩。FMABFqFAyFAxMAxyl/2C)()1正常的坐标轴可不画出受力图。象为对象,解除约束画对以梁解:AB例补4-2均质水平梁AB重P,AC段受均布载荷作用,载荷集度为q。BC段受力偶矩M=Pa的力偶作用。求A、B处支座反力。4/)6(20204/)23(4/)22(4/)22(02240)(00)222aqPFPaqFFPaqFFaqPaqaPaPaaqaaPMFaaqaPMaFMFFBAyBAyyBBAAxxF列方程,解方程*力偶投影、求矩的计算*均布载荷投影、求矩的计算*列写方程的顺序2a4aqMACBPFAyFAxFB。处受二力杆的反作用力处固定铰支座、等于重物重量。以整体为对象,绳拉力解:CA)1铰链约束力。两处、不计,求如图悬挂,各构件重量一重物例CAWkN8.15-420010030045°BCDWAkN4.26.08.145cos045cos0kN85.045sin2.18.145sin045sin0kN2.16.08.14.06.03.01.006.03.01.00)2CTAxCTAxxAyCCAyyTAyAyTBFFFFFFFFWFFWFFWFFFWFM平衡。对象受平面一般力系而。还可列一元方程识别二力构件很关键;约束力。平衡方程,恰能解以整体为对象,可列0*33*AM20010030045°ABCDWFAyFAxFTFCealbW1PWABC,平面平行力系。除约束,作出其受力图解考虑满载和空载情况。以起重机为对象,分别上的轨道反力存在。起重机平衡时,须有向解:例4-6起重机重W1=500kN,起吊最大载荷P=250kN。a=6m,b=3m,l=10m,e=1.5m。欲使满载时不右倾,空载时不左倾,试确定平衡重W之值。0)(0)(0kN2501lPeWbFWbaMPABAFF须左轮,可能右倾。若要平衡满载时kN3756500)5.13()(0)(0)(0)(0)(001111aWebWaWWebFbaWWebFWebbFaWMPBBBAB令须右轮,可能左倾。若要平衡空载时FFFAFBkN36136250105005.10)(0)(111balPeWWlPeWWbaFblPeWWbaFAA令kN375kN361W故例补4-3杆AB、CD在E处铰接,重物W=1kN,通过滑轮悬挂在C点。滑轮半径r=0.2m,求A、D支座反力。后拆分。求得求得整体:分析AxxDxANFNM,0,,0)(FAyyDyEDyyAyENFNMCDNFNMAB求得整体:,求得:或,求得整体:求得及滑轮:,0,0,0,,0C0.5m45°Br0.5mDEA0.5m45°Br0.5mDEANAxNDxNAyNDyWCBrEANAxNAyWW'DNDxNDyEW''CkN4.2)kN4.2(0,0kN4.25.012.15.02.102.15.0,0DxAxDxAxxDxDxANNNNFWNWNM先以整体为对象,解:*复杂问题可先确定方案,即选对象的顺序、列方程的顺序,再实施方案。*滑轮、绳索受力分析;代入中间量时原来的“+、-”号不能变kN15.07.02.002.07.05.0,0及滑轮为对象,再以kN2)1(10,0AyDyDyAyyNWNWNNF再以整体为对象,0.5m45°Br0.5mDEANAxNDxNAyNDyWCBrEANAxNAyWW'束力,无一可解出。个外约如图。先以整体为对象,受力解:4处的约束力。及中间铰、、。求支座,载荷和支承如图。铰链连接、组合梁由例CEBAMqFlCEACmkN5m/kN5.2kN,5m,8,8-4kN5.245sin045sin0kN54.345cos4/045cos40kN5.22163028340ECxECxxCyEECyyCyCyEFFFFFFqlFFqlFFlMqlFMlFlqlMADBqMEF45°l8l8l4l4l4C为对象。,且可解。故先以量,少于未知上为分离体,很明显、可取CEACCECEAC3ADBqMEFFAyFAx45°FBFECCqME45°FEFCyFCxl8ADBqMEF45°l8l8l4l4l4CADBqMEFFAyFAx45°FBFEC,再以整体为对象,已解得kN54.3EFkN5.245cos2045cos20kN1545cos484045cos22840kN5.245sin045sin02EBAyEBAyyEBEBAEAxEAxxFlqFFFFlqFFFFlFMqlFllFlFMllqFlFlMFFFFF同时应分离载荷。个结构上时,取分离体分布载荷连续作用在几取未知量少的对象。分离整体后,应优先选**FFFFFFx40301-1N1N1截面以左,取平的步骤。按截面法截、取、代、解:横截面处的轴力。、、图。求各截面处作用有外力如、、、杆件在例3-32-21-11-7DCBA221133ABCD3FF2F2FFFFFFx30302-2N2N2截面以左,取FFFFFFFx203203-3N3N3截面以左,取FFFFFx20203-3*N3N3截面以右,若取般取受力简单的一侧。数值都是相同的。故一向,求得内力的代象,只要内力画在正方不论取截面哪一侧为对*2211AB3FFFN122A3FFN2221133ABC3FF2FFN333D2FFN3轴力图。截面,画直杆、、,分别作用在、、受力如图。直杆例补ADCBAFFFADkN20kN10kN1617321ABCDF1F2F3FD112233AF111FN1ABF1F222FN2DFD33FN3ABCF1F2F333FN3求约束力解:)1kN1400123DDxFFFFFF截面,用截面法。,,段任取三段,在各分为计算轴力332211,,)2CDBCABkN160011N1N11FFFFABx截面以右为对象,段,取kN60022N2N221FFFFFBCx截面以右为对象,段,取kN140033N3N3FFFFCDDx截面以左为对象,段,取kN140033*N3N3321FFFFFFCDx截面以右为对象,段若取画图,只标轴力大小。坐标轴,根据计算结果设画轴力图N,)3Fx对象可不求约束力。悬臂梁以自由端一侧为*FNx16kN6kN14kN+kN1004055252001-14N1N1FFFx截面以右,取段。,分悬臂梁,可不求约束力解:试作其轴力图。等截面直杆受力如图,例2-760030050040040kN55kN25kN20kNABCDEkN50055252002-2N2N2FFFx截面以右,取kN50252003-3N3N3FFFx截面以右,取kN2002004-4N4N4FFFx截面以右,取,只与外力有关。、大小及杆段长度无关截面上轴力与截面形状*40kN55kN25kN20kNBCDFN1E11FN255kN25kN20kNCDE22FN325kN20kNDE3320kNFN4E44++10kN50kN5kN20kNFNxA须试算。求均不同、各段轴力图如右。,,力:截面法,可求得各段轴段。由外力,将杆分为解:maxNN2N3N1,kN100kN160kN12034AFFFF此杆最大正应力。,试画出轴力图,并求,,各段横截面积钢制阶梯杆受力如图。例232221mm900mm625mm16003-7AAA120kN220kN260kN160kN1122330.75m1m1.2mABCD各段应力:MPa178Pa101781090010160MPa160Pa10160106251010075MPaPa1075101600101206633N36632N26631N1AFCDAFBCAFAB段段段)(MPa178max不论正负,只考虑大小段。,在CD-++120kN160kN100kNxFNLlF1拉杆A。求拉杆横截面上的应力,,,拉杆直径如图踏板受压力例补mm,56mm330mm9N4002-71lLDF,,,以右部为对象截断拉杆的轴力。先由截面法求横截面上轴向拉伸。拉杆为二力构件解:lLFFlFLFMA1NN1,0,0LlF1拉杆AFN37.1MPaPa101.37009.0056.040033.0446221NlDLFAF*二力杆横截面上的轴力与端点外力相等。*求结构中拉压杆的轴力,截开拉压杆后可带着部分结构为对象。。轴力图如右。,,求得各段轴力:以截面右侧为对象截面法段。由外力将杆分为杆端约束力及解:kN10kN20)(22)1N2N1FF杆的总变形。力;横截面上的轴力和正应。试求:。各段长度及受力如图段,横截面积段。阶梯形钢杆,例)2)1mm200mm500Pa2005-722CDBCABACDAAACGEMPa50102001010MPa20105001010MPa4010500102063N263N263N1NCDBCABAFCDAFBCAFABAF段:段:段:。不同,则需另算正应力和截面积各段轴力10kN30kN100100100ABCD1122mm015.0m105.1102001010105001010
本文标题:工程力学例题
链接地址:https://www.777doc.com/doc-5165180 .html