您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 最新人教版2018-2019年八年级下期中数学试卷含答案解析
八年级(下)期中数学试卷一、选择答案:(每题3分,共30分)1.(3分)下列二次根式中,属于最简二次根式的是()A.B.C.D.2.(3分)二次根式有意义的条件是()A.x>3B.x>﹣3C.x≥﹣3D.x≥33.(3分)正方形面积为36,则对角线的长为()A.6B.C.9D.4.(3分)如图,在△ABC中,三边a,b,c的大小关系是()A.a<b<cB.c<a<bC.c<b<aD.b<a<c5.(3分)已知钝角三角形的三边为2、3、4,该三角形的面积为()A.B.C.D.6.(3分)直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为()A.121B.120C.90D.不能确定7.(3分)如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cmB.2cmC.3cmD.4cm8.(3分)如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是()A.12B.16C.20D.249.(3分)如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为()A.6B.8C.10D.1210.(3分)如图,正方形ABCD中,AE=AB,直线DE交BC于点F,则∠BEF=()A.45°B.30°C.60°D.55°二、填空:(每题3分,共30分)11.(3分)▱ABCD中一条对角线分∠A为35°和45°,则∠B=度.12.(3分)矩形的两条对角线的夹角为60°,较短的边长为12cm,则对角线长为cm.13.(3分)小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1m,当它把绳子的下端拉开5m后,发现下端刚好接触地面,则旗杆的高为m.14.(3分)已知菱形的两条对角线长为8cm和6cm,那么这个菱形的周长是cm,面积是cm2.15.(3分)在平面直角坐标系中,点A(﹣1,0)与点B(0,2)的距离是.16.(3分)如图,每个小正方形的边长为1,在△ABC中,点D为AB的中点,则线段CD的长为.17.(3分)如图,AD是△ABC的角平分线,DE∥AC交AB于E,DF∥AB交AC于F.且AD交EF于O,则∠AOF=度.18.(3分)有一块直角三角形的绿地,量得两直角边分别为6m,8m,现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,扩充后等腰三角形绿地的周长.[来源:学科网ZXXK]19.(3分)在正方形ABCD中,E在BC上,BE=2,CE=1,P是BD上的动点,则PE和PC的长度之和最小是.20.(3分)观察下列各式:=2,=3,=4,…请你找出其中规律,并将第n(n≥1)个等式写出来.三、解答题:(共60分)21.(3分)+2﹣(﹣).22.(3分).23.(6分)如图,已知▱ABCD中,AE平分∠BAD,CF平分∠BCD,分别交BC、AD于E、F.求证:AF=EC.24.(6分)已知:如图,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH(即四边形ABCD的中点四边形).(1)四边形EFGH的形状是,证明你的结论;(2)当四边形ABCD的对角线满足条件时,四边形EFGH是矩形;(3)你学过的哪种特殊四边形的中点四边形是矩形?.25.(5分)某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?26.(6分)如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.(1)在图1中以格点为顶点画一个面积为10的正方形;(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、、;(3)如图3,点A、B、C是小正方形的顶点,求∠ABC的度数.27.(6分)已知:如图,△ABC中,∠ACB=90°,点D、E分别是AC、AB的中点,点F在BC的延长线上,且∠CDF=∠A.求证:四边形DECF是平行四边形.28.(7分)已知△ABC中,AB=20,AC=15,BC边上的高为12,求△ABC的面积.29.(8分)如图所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.[来源:Z§xx§k.Com](1)求证:△ACE≌△BCD;(2)若AD=5,BD=12,求DE的长.30.(10分)如图,在在四边形ABCD中,AD∥BC,∠B=90°,且AD=12cm,AB=8cm,DC=10cm,若动点P从A点出发,以每秒2cm的速度沿线段AD向点D运动;动点Q从C点出发以每秒3cm的速度沿CB向B点运动,当P点到达D点时,动点P、Q同时停止运动,设点P、Q同时出发,并运动了t秒,回答下列问题:(1)BC=cm;(2)当t=秒时,四边形PQBA成为矩形.(3)当t为多少时,PQ=CD?(4)是否存在t,使得△DQC是等腰三角形?若存在,请求出t的值;若不存在,说明理由.参考答案与试题解析一、选择答案:(每题3分,共30分)1.(3分)下列二次根式中,属于最简二次根式的是()A.B.C.D.【解答】解:A、被开方数含分母,故A错误;B、被开方数含分母,故B错误;C、被开方数含能开得尽方的因数,故C错误;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D正确;故选:D.2.(3分)二次根式有意义的条件是()A.x>3B.x>﹣3C.x≥﹣3D.x≥3【解答】解:∵要使有意义,必须x+3≥0,∴x≥﹣3,故选C.3.(3分)正方形面积为36,则对角线的长为()A.6B.C.9D.【解答】解:设对角线长是x.则有x2=36,解得:x=6.故选:B.4.(3分)如图,在△ABC中,三边a,b,c的大小关系是()A.a<b<cB.c<a<bC.c<b<aD.b<a<c【解答】解:根据勾股定理,得a==;b==;c==.∵5<10<13,∴b<a<c.故选D.5.(3分)已知钝角三角形的三边为2、3、4,该三角形的面积为()A.B.C.D.【解答】解:如图所示:过点B作BD⊥AC于点D,设BD=x,CD=y,则AD=4﹣y,故在Rt△BDC中,x2+y2=32,故在Rt△ABD中,x2+(4﹣y)2=22,故9+16﹣8y=4,解得:y=,∴x2+()2=9,解得:x=,故三角形的面积为:×4×=.故选:D.6.(3分)直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为()A.121B.120C.90D.不能确定【解答】解:设另一直角边为a,斜边为a+1.根据勾股定理可得,(a+1)2﹣a2=92.解之得a=40.则a+1=41,则直角三角形的周长为9+40+41=90.故选C.7.(3分)如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cmB.2cmC.3cmD.4cm【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=5cm,AD∥BC,∴∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠AEB=∠BAE,∴BE=AB=3cm,∴EC=BC﹣BE=5﹣3=2cm;故选:B.8.(3分)如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是()A.12B.16C.20D.24【解答】解:∵E、F分别是AB、AC的中点,∴EF是△ABC的中位线,∴BC=2EF=2×3=6,∴菱形ABCD的周长=4BC=4×6=24.故选:D.9.(3分)如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为()A.6B.8C.10D.12【解答】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故选C.10.(3分)如图,正方形ABCD中,AE=AB,直线DE交BC于点F,则∠BEF=()A.45°B.30°C.60°D.55°【解答】解:设∠BAE=x°,∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∵AE=AB,∴AB=AE=AD,∴∠ABE=∠AEB=(180°﹣∠BAE)=90°﹣x°,∠DAE=90°﹣x°,∠AED=∠ADE=(180°﹣∠DAE)=[180°﹣(90°﹣x°)]=45°+x°,∴∠BEF=180°﹣∠AEB﹣∠AED=180°﹣(90°﹣x°)﹣(45°+x°)=45°.答:∠BEF的度数是45°.二、填空:(每题3分,共30分)11.(3分)▱ABCD中一条对角线分∠A为35°和45°,则∠B=100度.【解答】解:∵▱ABCD中一条对角线分∠A为35°和45°,∴∠BAD=80°,∵四边形BACD是平行四边形,∴BC∥AD,∴∠B+∠BAD=180°,∴∠B=100°,故答案为:100.12.(3分)矩形的两条对角线的夹角为60°,较短的边长为12cm,则对角线长为24cm.[来源:学_科_网Z_X_X_K]【解答】解:如图:AB=12cm,∠AOB=60°.∵四边形是矩形,AC,BD是对角线.∴OA=OB=OD=OC=BD=AC.在△AOB中,OA=OB,∠AOB=60°.∴OA=OB=AB=12cm,BD=2OB=2×12=24cm.故答案为:24.13.(3分)小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1m,当它把绳子的下端拉开5m后,发现下端刚好接触地面,则旗杆的高为12m.【解答】解:设旗杆的高AB为xm,则绳子AC的长为(x+1)m.在Rt△ABC中,AB2+BC2=AC2,∴x2+52=(x+1)2,解得x=12,∴AB=12.∴旗杆的高12m.故答案是:12.14.(3分)已知菱形的两条对角线长为8cm和6cm,那么这个菱形的周长是20cm,面积是24cm2.【解答】解:∵菱形的两条对角线长为8cm和6cm,∴菱形的两条对角线长的一半分别为4cm和3cm,根据勾股定理,边长==5cm,所以,这个菱形的周长是5×4=20cm,面积=×8×6=24cm2.故答案为:20,24.15.(3分)在平面直角坐标系中,点A(﹣1,0)与点B(0,2)的距离是.【解答】解:点A(﹣1,0)与点B(0,2)的距离是:=.故答案填:.16.(3分)如图,每个小正方形的边长为1,在△ABC中,点D为AB的中点,则线段CD的长为.【解答】解:观察图形AB==,AC==3,BC==2∴AC2+BC2=AB2,∴三角形为直角三角形,∵直角三角形中斜边上的中线等于斜边的一半∴CD=.17.(3分)如图,AD是△ABC的角平分线,DE∥AC交AB于E,DF∥AB交AC于F.且AD交EF于O,则∠AOF=90度.【解答】证明:∵DE∥AC,DF∥AB,∴四边形AEDF为平行四边形,∴OA=OD,OE=OF,∠2=∠3,∵AD是△ABC的角平分线,∵∠1=∠2,∴∠1=∠3,∴AE=DE.∴▱AEDF为菱形.∴AD⊥EF,即∠AOF=90°.故答案为:90.18.(3分)有一块直角三角形的绿地,量得两直角边分别为6m,8m,现在要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,扩充后等腰三角形绿地的周长32m或(20+4)m或m.【解答】解:在Rt△ABC中,∠ACB=90°,AC=8,BC=6,由勾股定理有:AB=10,应分以下三种情况:[来源:学科网ZXXK]①如图1,当AB=AD=10时,∵AC⊥BD,∴CD=CB=6m,∴△ABD的周长=10+10+2×6=32m.②如图2,当AB=BD=10时,∵BC=6m,∴CD=10﹣6=4m,∴AD==4m,∴△ABD的周长=10+10+4=(20+4)
本文标题:最新人教版2018-2019年八年级下期中数学试卷含答案解析
链接地址:https://www.777doc.com/doc-5084712 .html