您好,欢迎访问三七文档
ConstraintsandTheoremProvingLectureNotesfortheInternationalSummerSchoolonConstraintsinComputationalLogics?HaraldGanzinger1andRobertNieuwenhuis21Max-Planck-Institutf urInformatik,ImStadtwald,66123Saarbr ucken,Germany.hg@mpi-sb.mpg.de2TechnicalUniversityofCatalonia,JordiGirona1,08034Barcelona,Spain.roberto@lsi.upc.es1AbouttheselecturesSymbolicconstraintsprovideaconvenientwayofdescribingtheconnectionbetweendeductionatthelevelofgroundformulaeandthegeneralinferencesastheyarecomputedbyaproveronformulaewithvariables.Forinstance,eachresolutioninferencerepresentsin nitelymanygroundin-ferences,obtainedbysubstitutinggroundtermsforthevariablesintheclauses.Forrefutationalcompletenessonlycertainrestrictedcasesofgroundinferencesarerequired.Inthecaseoforderedresolution,essentialgroundinferencesonlyresolvemaximalliterals.Onthenon-groundlevel,theseorderingrestrictionscanberepresentedasakindofrestrictedquanti cation:onlygroundtermsthatsatisfytheorderingrestrictionsshouldbesubstitutedforthevariables.Thisleadsustoresolutioncalculiwithorder-constrainedclauses,whereineachin-ferencetheconclusionisrestrictedbytheorderingconstraintsofthecurrentdeductionstep,combinedwiththeconstraintsthatarealreadypresentinthepremises.Clauseswithunsatis ableconstraintsrepresentnogroundclausesandcanhenceberemovedduringthedeductionprocess,thuspruningthesearchspace.Inthesenoteswewillmainlyfocusonsaturation-basedtheoremprovingmethodsincludingresolution,superpositionandchaining.Inthiscontext,apartfromorderingrestrictions,constraintsarealsousedtodescribeuni cationprob-lems.Thispaperconsistofthreemainparts.Firstwewillintroducethemainconceptsforthecaseofpureequationallogic,whererewritingandKnuth/Bendixcompletionarefundamentaldeduc-tionmethods.ThetopicswhichwecoverwillincludeBirkho ’stheorem, rst-ordervs.inductiveconsequences,termrewritesystems,con uence,termination,orderingsandcriticalpaircomputation(i.e.,superposition).Inthesecondpart,wewillextendtheseideastosaturation-basedmethodsforgeneral rst-orderclauses,includingsuperpositionandchaining-basedinference?BothauthorssupportedbytheESPRITworkinggroupCCL-II,ref.WG#22457.2systems,completenessproofsbymeansofthemodelgenerationmethodandanabstractnotionofredundancyforinferences.Thethirdpartwillcoverseveralextensions,withspecialattentiontothoseaspectsforwhichconstraintsplayanimportantrole,likebasicstrategies,de-ductionmoduloequationaltheories,constraint-basedredundancymethods,anddeduction-basedcomplexityanalysisanddecisionprocedures.Formoredetailsandfurtherreferencesthereaderisreferredto[BG98,NR99].2EqualityclausesWebrie yrecallsomebasicconceptson rst-orderlogicwithequality.Inparticular,wegivethesyntaxandsemanticsforthefragmentofclausal(andhenceonlyuniversallyquanti ed)formulae.Wereferthereadertostandardtextbookssuchas[Fit90]forclausalnormalformtransformationsofarbitrarilyquanti ed rst-orderformulae.2.1Syntax:terms,atoms,equations,andclausesLetFbeasetoffunctionsymbols,Xanin nitesetofvariables(disjointwithF),andafunctionarity:F!INassociatinganarity(anaturalnumber)toeachfunctionsymbol.Functionsymbolsfwitharity(f)=narecalledn-arysymbols.Inparticular,fiscalledunary,ifn=1,binary,ifn=2,andaconstantsymbol,ifn=0.T(F;X)denotesthesetoftermswithvariablesorsimplyterms:atermisavariableoranexpressionf(t1;:::;tn)wherefisann-aryfunctionsymbolandthetiaretermsfor1 i n.Notethattermscanbeseenasorderedtreeswheretheleavesarelabeledbyconstantsymbolsorvariables,andwhereeveryothernodeislabeledbyafunctionsymbolofarityatleast1.Thenodesintermscanbeaddressedbypositionswhicharesequencesofnaturalnumbers.Therootinatermisaddressedbyposition (denotingtheemptysequence)andifpistheaddressofanodevinthavingthen 0successorsv1;:::;vn,thenthesehaveaddressesp:1;:::;p:n,respectively.Wesaythatafunctionsymboloravariableoccurs(atpositionp)inatermtifthenodeaddressedbypcarriesthatsymbolasalabel.Byvars(t)wedenotethesetofallvariablesoccurringint.LetPbeasetofpredicatesymbolswitharity(disjointfromFandX).Thenp(t1;:::;tn)isanatomifpisann-arypredicatesymbolandthetiaretermsfor1 i n.Inthesequelitwilloftensimplifymatterstechnicallytoalsoviewatomsastermsofaspeci csortwhich,inparticular,cannotoccuraspropersubtermsofotherterms.Bytjpwedenotethesubtermoftatpositionp:wehavetj =t,andf(t1;:::;tn)ji:p=tijpif1 i n(andisunde nedifin).Wealsowritet[s]ptodenotethetermobtainedbyreplacingintthesubtermatpositionpbytheterms.Forexample,iftisf(a;g(b;h(c));d),thentj2:2:1=c,andt[d]2:2=f(a;g(b;d);d).3AmultisetoverasetSisafunctionM:S!IN.Theunionmultisetsisde nedbyM1[M2(x)=M1(x)+M2(x).Wesometimesalsouseaset-likenotation:M=fa;a;bgdenotesthemultisetMwhereM(a)=2,M(b)=1,andM(x)=0forx6=aandx6=b.A rst-orderclauseisapairof nitemultisetsofatoms( ; ),written ! ,where iscalledtheantecedent,and thesuccedentoftheclause.Theemptyclause2isaclausewhereboth and areempty,andaHornclauseisaclausewhosesuccedent containsatmostoneatom.Inclausesweoftenusecommatodenotetheunionofmultisetsortheinclusionofanatominamultiset;forexample,wewriteA; ; 0! insteadoffAg[ [ 0! .Aliteraliseitheranatom(apositiveliteral)oranegationthere
本文标题:Constraints and Theorem Proving Lecture Notes for
链接地址:https://www.777doc.com/doc-4517622 .html