您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 综合/其它 > 7章习题解材料力学课后习题题解
7.1试用积分法求图示各梁的挠曲线方程、转角方程、最大挠度和最大转角。梁的抗弯刚度EI为常数。解:支座反力如图MeBAlxMe/lMe/l(a)23()()26eeeeMMxxlMEIyMxxlMEIyxClMEIyxCxDl边界条件:0:0;:0xyxly222231616eeMlxxyEIlMlxxyEIl代入得:,06eMClDmax222022eemax0(0)6()321630,1063332793eAeBeeMlEIMllEIMllyEIMlxxEIlxlMlMlyyxEIEI222231616eeMlxxyEIlMlxxyEIl于是有:7.2试用积分法求图示各梁C截面处的挠度yC和转角θC。梁的抗弯刚度EI为常数。解:支座反力如图所示分两段建立挠曲线近似微分方程并积分。AB段:l/2l/2C(b)qBAM=3ql/82ql/2x1x2xy211221132211113()281348131216EIyMxqlxqlEIyqlxqlxCEIyqlxqlxCxDBC段:2222322224322222131()282213148621311216242lEIyMxqlxqlqxlEIyqlxqlxqxClEIyqlxqlxqxCxDl/2l/2C(b)qBAM=3ql/82ql/2x1x2xy由连续性条件:l/2l/2C(b)qBAM=3ql/82ql/2x1x2xy22113221111348131216EIyqlxqlxCEIyqlxqlxCxD32222432222213148621311216242lEIyqlxqlxqxClEIyqlxqlxqxCxD1212121212:;2;lxyyyyCCDD代入边界条件:l/2l/2C(b)qBAM=3ql/82ql/2x1x2xy12120,0,00;0xyyCCDD32427()4841()384CCylqlEIyylqlEI32222432222213148621311216242lEIyqlxqlxqxClEIyqlxqlxqxCxD7.2(b)试用积分法求图示梁C截面处的挠度yC和转角θC。梁的抗弯刚度EI为常数。ABq(b)ql/2Cl/2l/2x2x1qlM=5ql/82解:支座反力如图所示,分两段建立挠曲线近似微分方程并积分。ABq(b)ql/2Cl/2l/2x2x1qlM=5ql/8222122221122311223411122222251()825()82451()82511826511166245()8245182MxqlxqlqxqllMxqlxqlxEIyMxqlqlxqxEIyqlxqlxqxCEIyqlxqlxqxCxDqllEIyMxqlqlxxqlEIyqlxqlx2232232224451166124lxCqllEIyqlxqlxxCxD由变形连续条件:1122222llEIyEIyllEIyEIy31241210;19210;768CCqlDDql解得:ABq(b)ql/2Cl/2l/2x2x1qlM=5ql/8222222322322251824451166124qllEIyqlxqlxxCqllEIyqlxqlxxCxD31241210;19210;768CCqlDDql代入积分常数可得:413()48CqlylEI471()384CqlyylEIABq(b)ql/2Cl/2l/2ABqCl/2l/2ABql/2Cl/2l/2yCyC1yBθByC2补例:采用叠加法求梁截面C处的挠度yC和转角。梁的抗弯刚度EI为常数。解:分为图示两种荷载单独作用的情况143433243412272282638412367713846384CBBCCCClyyllqqlqlEIEIqlqlyEIEIqlqlqlyyyEIABq(b)ql/2Cl/2l/2ABqCl/2l/2ABql/2Cl/2l/2yCyC1yBθByC2331332412264812241348CBCCCClqqlEIqlqlEIEIqlEIqaCqAB(d)aaaa3qa/45qa/4x1x2x37.2(d)试用积分法求图示梁C截面处的挠度yC和转角θC。梁的抗弯刚度EI为常数。解:支座反力如图,本题应分3段建立挠曲近似微分方程。因此,写出3段弯矩方程为:21231()23()2435()23244MxqxaMxqaxqaxaaMxqaxqaxaqaxa2113114111222222332221()2161243()2413228136224EIyMxqxEIyqxCEIyqxCxDaEIyMxqaxqaxaaEIyqaxqaxaCaEIyqaxqaxaCxD挠曲线近似微分方程21231()23()2435()23244MxqxaMxqaxqaxaaMxqaxqaxaqaxa31141112222332221612413228136224EIyqxCEIyqxCxDaEIyqaxqaxaCaEIyqaxqaxaCxDqaCqAB(d)aaaa3qa/45qa/4x1x2x3由连续性条件和边界条件:12122:;03:0xayyyyxay可得:324242384837483(2)8CCqaDqaqlyyaEIl/2l/2ACBEI2EIF(a)EDEI(b)aaaaBAqCF7.4用积分法求图示各梁的变形时,应分几段来列挠曲线的近似微分方程?各有几个积分常数?试分别列出确定积分常数时所需要的位移边界条件和变形连续光滑条件。解:(a)分为两段列挠曲近似微分方程,共有4个积分常数,位移边界条件:y1A=y1A’=0;变形连续条件:y1C=y2C;y1C’=y2C’(b)分为四段列挠曲近似微分方程,共有8个积分常数,位移边界条件:y1A=y3B=0,变形连续条件:y1A=y2A,y1A’=y2A’y2B=y3B,y2B’=y3B’;y3B=y4B,y3B’=y4B’;DCEAEI(c)Fl/2l/2qABaEDEIFCqABaaaa(d)解:(c)分为两段列挠曲近似微分方程,共有4个积分常数,位移边界条件:y1A=0;y2C=(F+ql)a/2EA变形连续条件:y1B=y2B;y1B’=y2B’(d)分为四段列挠曲近似微分方程,共有8个积分常数,位移边界条件:y1A=y2C=y4B=0,变形连续条件:y1D=y2D,y1D’=y2D’;y2C=y3C,y2C’=y3C’;y3E=y4E(b)Mea2aqaaaa(a)3aa(d)Me(c)Aaaaaqaqa2q7.5根据梁的受力和约束情况,画出图示各梁挠曲线的大致形状。aaaF(f)aqa(e)aq2qa/22qlqBA(a)lqBA2qlBAyB1B1yB2B27.7试用叠加法求图示各悬臂梁截面B处的挠度yB和转角θB。梁的抗弯刚度EI为常数。解:71224422482()8238BBBeyyyMlqlEIEIqlqllEIEIqlEI332312()5666eBBBMlqlqlqllqlEIEIEIEIEIFlFCl/2l/2AB(b)FCl/2l/2AByC1FlCl/2l/2AByC2θA1θA27.8试用叠加法求图示简支梁跨中截面C处的挠度yc和支座截面A的转角θA。梁的抗弯刚度EI为常数。解:12322/23334863484824CCCexlyyyMxFllxEIEIlqlqlEIEIqlEI22212()516616648eAAAMlFlqlFllFlEIEIEIEIEIll/2FCAB(c)Me=Fl/2ll/2CABMe=Fl/2ll/2FCAByC1yC2¦ΘA1¦ΘA2¦ΘB1¦ΘB2Fl/2FCByC2'''7.9试用叠加法求图示各梁指定截面的位移。梁的抗弯刚度EI为常数。解:12231233333(/2)123226242324241212CCCCBBeeyyyylFlEIMlMllFllEIEIEIlFlFlFlEIEIEIlqlEIyC3yC2yC12F=ql/8F=ql/2qBCDBACDBACF=ql/2l/2l/2DqBA(e)CF=ql/2l/2¦ΘC¦ΘB¦ΘA¦ΘB¦ΘA1234122324444(/2)282(/8)2161282364128485384CCCCBByyyylqllEIlFlqllqllEIEIEIqlqlqlEIEIEIlqlEI7.9(e)试用叠加法求图示各梁指定截面的位移。梁的抗弯刚度EI为常数。解:yC3yC2yC12F=ql/8F=ql/2qBCDBACDBACF=ql/2l/2l/2DqBA(e)CF=ql/2l/2¦ΘC¦ΘB¦ΘA¦ΘB¦ΘA1323223333/2(/8)163632244832CBBCqlFlqllEIEIEIqlqlqlEIEIEIlqlEI213233166/832696eAAAMlFlEIEIqllqlqlEIEIEI7.12试用叠加法求图示各梁跨中C处的挠度yC。梁的抗弯刚度EI为常数。Cl/2l/2AB(a)BACq/2q/2CABq/212445203845768CCCyyyqlEIqlEICqADB3000100010007.15图示木梁AB的右端由钢杆支承,已知梁AB的横截面为边长等于200mm的正方形,弹性模量E1=10GPa;;钢杆BD的横截面面积A2=250mm2,弹性模量E2=210GPa。现测得梁AB中点处的挠度为yC=4m,试求均布荷载集度q。解:A支座反力和BD杆受的力为FA=FBD=q411221122466631522384280338428030.222101025010384101012421.6/BDCCqBDFqyyLEIEAqqEIEAqqmqkNm
本文标题:7章习题解材料力学课后习题题解
链接地址:https://www.777doc.com/doc-4465731 .html