您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 材料物理性能复习资料
12012年贵州大学材料与冶金学院材料物理性能复习资料一.名词解释:1.磁化:物质在磁场中由于受磁场的作用表现出来一定的磁性的现象。3.磁矩:与磁偶极子等效的平面回路的电流和回路面积的乘积定义为磁矩。其方向与环形电流法线方向一致,可用右手定则确定。4.磁化强度M:一个物体在外磁场中被磁化的程度,用单位体积内磁矩多少来衡量,5.抗磁性:磁化方向与外加磁场方向相反,即当磁化率χ或磁化强度M为负时,固体表现为抗磁性。χ=M/H<0,很小,约为-10-4~-10-6。6.顺磁性:在外加磁场作用下,每个原子磁矩比较规则地取向,材料显示极弱的磁性。磁化强度M与外磁场方向一致,M为正,而且M严格地与外磁场H成正比。7.铁磁性:过渡金属Fe、Co、Ni和某些稀土金属如Gd等物质,无论是否施加外磁场,都具有永久磁矩,且在无外加磁场或较弱的磁场作用下,就能产生很大的磁化强度。室温下的磁化率χ很大,可达106数量级,属于强磁性物质。8.热传导:当固体材料一端的温度比另一端高时,热量会从热端自动地传向冷端的现象。9.热阻:是材料对热传导的阻隔能力。11.热膨胀:物体的体积或长度随温度的升高而增大的现象称为热膨胀。12.魏得曼-弗兰兹定律:在室温下许多金属的热导率与电导率之比几乎相同,而不随金属的不同而改变。13.材料的热稳定性:热稳定性是指材料承受温度的急剧变化而不致破坏的能力,又称为抗热震性。14.导体:可在电场作用流动自由电荷的物体,能传导电流的元件15.绝缘体:不善于传导电流的物质16.半导体:电阻率介于金属和绝缘体之间并且有负的电阻温度系数的材料17、磁畴:未加磁场时铁磁质内部已经磁化到饱和状态的若干个小区域。18、磁矫顽力:反磁化过程中,当反向磁畴扩大到同正向磁畴大小相相等时,它们的磁化对外对外部的效果相互抵消,有效磁化强度为零,这时的磁场强度称为磁矫顽力。19、磁化率:即单位外磁场强度下材料的磁化强度。它的大小反映了物质磁化的难易程度,是材料的一个重要的磁参数。20、磁晶的各向异性:在单晶体的不同晶向上,磁性能不同的性质。21、磁弹性能:当铁磁体存在应力时,磁致伸缩要与应力相互作用,与此有关的能量。22、退磁能::铁磁体与自身退磁场的相互作用能称为退磁场能。(磁化饱和后,慢慢减少H,则M亦减小,此过程为退磁。)23、磁导率:反应磁感应强度随外磁场的变化速率,单位与相同,为亨/米。其大小与磁介质和随外加磁场强度有关。一.解答题:1.傅利叶导热定律适用条件:稳定传热的条件,即传热过程中,材料在x方向上各处的T是恒定的,与时间无关,ΔQ/Δt是常数2、简述材料热容的定义,为什么说材料的等容热容CV的物理本质是材料内能随温度的变化率时常需附加无相变、无化学反应和无非体积功的条件?CV和CP的2本质差别是什么?对实际材料进行热分析时,若有相变发生,为什么其CP中还能反应相变的热效应?①热容指一定量物质在规定条件下温度每变化一度(或K)所吸收或放出的热量。②当体系处于一般情况时,δQ=dU-∑Yidyi-∑μidni,其热容中将包含更多的能量因素引起的热效应,只有在材料中无相变、无化学反应和无非体积功的条件下才有δQ=dU,从而CV=δQ/dT=dU/dT,其等容热容CV的物理本质是材料内能随温度的变化率。③CV=δQ/dT=dU/dT,Cp=δQ/dT=dH/dT,它们的本质差别在于Cp中包含了其他热效应。④因为Cp包含了相变等除内能以外的其他变化所产生的热效应。3、简述杜隆—珀替经典热容理论模型和结果,评价其局限性。①理论模型:把构成晶体点阵的基元近似成独立粒子和理想气体,并只考虑其平均动能和势能,没有考虑原子振动形成的格波。②结果:CV=∂E/∂T=3R③局限性:模型太简化,结果仅反映当T>ΘD时,CVm→3R,且Cv与温度无关,对单原子气体的实验结果是比较符合的。4、实际材料的等压热容通常由哪些部分组成?又受到哪些因素的影响?有什么影响规律?①实际材料的等压热容包括等容热容部分和材料除内能以外的其它变化所产生的热效应。②受到温度、晶体结构和成分以及相变的影响。温度升高,材料的热容增大。晶体结构能够改变材料恢复系数β、基元构成和原子间距,从而改变色散关系和谐振子数量;化学成分还能够决定原子质量M和各种原z数量及比例,也能够影响材料的Cv值及变化规律。一级相变导致等压热容出现不连续奇异,二级相变导致等压热容出现连续奇异。5、一级相变、二级相变如何界定?为什么一级相变、二级相变在相变温度点其热容曲线会出现差异?①在相变点,一级相变的特点是:两相化学位连续;两相化学位一阶偏导数有突变;二级相变的特点是:两相化学位和化学位一阶偏导数连续;两相化学位二阶偏导数存在突变。②一级相变在相变点处其化学位的一阶偏导数不连续,其二阶偏导数肯定不存在,因此其等压热容在相变点出现间断奇异。二级相变的化学位一阶偏导数在相变点连续,而二阶偏导数在相变点不连续,故其等压热容在相变点出现连续奇异。6、何谓材料的热膨胀?其物理本质是什么?为什么热膨胀系数能反映原子结合力的大小?为什么简谐振动近似无法说明热膨胀的物理本质?①热膨胀:材料在加热和冷却过程中,其宏观尺寸随温度发生变化的现象。②物理本质:在非简谐近似下,随温度增加,原子热振动不仅振幅和频率增加,其平衡位置距平均尺寸也增加,宏观上变现为热膨胀。③因为原子偏离平衡位置的距离Un与原子间作用力有关。④因为简谐近似下,原子的相互作用势能展开函数近取到位移的二次项,该势能函数是关于原子平衡位置对称的。说明原子只以其平衡位置为中心振动,温度增加时振幅和频率增加。但微观上原子的平衡间距不发生变化,宏观上晶体尺寸不改变。7.相变、合金化、晶体结构的不同以及晶体缺陷都会影响材料的热膨胀特性。①热膨胀曲线在一级相变点间断奇异,在二级相变点连续变化。②合金化对膨胀系数的影响很复杂,一定近似下的共性有:单相连续固溶体的膨胀系数其量值通常在两组元膨胀系数之间;固溶体从无序向有序转变膨胀系数常降低;两组元形成化合3物膨胀系数一般比形成固溶体低;多相合金的膨胀系数与各相的膨胀系数、弹性模量E和体积分数有关;铁磁合金中易出现膨胀反常现象。③晶体结构与原子间距、恢复力系数有关,影响原子结合力,也造成膨胀系数各向异性;晶体缺陷破坏晶体结构的完整性,使膨胀系数增加。8.简述由热膨胀分析方法测绘过冷奥氏体等温转变曲线的原理和方法,并说明为什么由膨胀曲线能获得组织转变量曲线?对不完全转变又如何处理?原理:利用热膨胀测试分析材料中的组织或相转变的原理是假设试样的体积膨胀量与其中的组织或相变量成正比。即相或组织转变量(%)=(发生的膨胀量/总膨胀量)×该相或组织在最终组织中的百分数方法:为了测绘等温或连续转变曲线,必须首先把各试样在等温或连续冷却条件下测得的膨胀曲线变换为相应的转变量-时间曲线,然后再绘制等温或连续转变曲线。9.解释温度场、温度梯度、热通量、导热系数、热阻、导温系数。①温度场:指物体内温度随空间和时间的分布规律。②温度梯度:温度沿其等温面法向的变化率,方向指向温度增加方向。③热通量(热流密度):指单位时间内通过单位法向面积的热量。④导热系数:对于导热性质各向同性的材料,有q=-λ·gradT,其中比例因子λ称为导热系数或热导率。单位:W/(m·K)⑤热阻:定义W=1/λ为热阻,单位:m·K/W⑥导温系数:α=λ/ρc,单位:(㎝)²/S,表征材料传热的快慢程度。其中ρ为材料密度,c为材料比热。20.材料导热的物理本质是什么?有哪几种导热机制?微观上它们的导热系数有何不同?影响导热的因素有哪些?本质:热传导是热量(能量)在温度梯度驱动下的定向运输过程。机制:热量的载运者可以是自由电子(电子导热)、格波(声子导热)和电磁波(光子导热等)。影响因素:原子结构、晶体结构、成分、组织及晶体结构完整性。21.正常情况下,为什么半导体的电阻率随温度的升高而降低。答:正常情况下,为什么半导体的电阻率随温度的升高而降低。自由电子,由公式知,自由电子与温度近似成正比,故温度升高,自由电子增大,所以半导体的电阻率随温度的升高而降低。22.金属电阻随温度升高而升高原因:金属材料随温度升高,离子热振动的振幅增大,电子就愈易受到散射,可认为μ与温度成正比,则ρ也与温度成正比23.影响金属导电性的因素主要因素:温度,受力情况,冷加工,晶体缺陷,热处理,几何尺寸效应,电阻率各向异性。24.当形成化合物时,合金的导电性变化激烈,其电阻率要比各组元的电阻率高很多。原因在于原子键合的方式发生了变化,其中至少一部分由金属键变为共价键获离子键,4使导电电子减少。若两组元给出的价电子的能力相同(即两个组元的电离势几乎没差别),则所形成化合物的电阻值就低,若两个组元的电离势相差较大,即一组元的给出电子被两个组元吸收,则化合物的电阻就大,接近半导体的性质.25.本征硅的导电机理:在热、光等外界条件的影响下,满带上的价电子获得足够的能量,跃过禁带跃迁至空带而成为自由电子,同时在满带中留下电子空穴,自由电子和电子空穴在外加电场的作用下定向移动形成电流。26.硼掺杂Si的导电机制:在本征半导体中,掺入3价硼元素的杂质(硼,铝,镓,铟),就可以使晶体中空穴浓度大大增加。因为3价元素的原子只有3个价电子,当它顶替晶格中的一个4价元素原子,并与周围的4个硅(或锗)原子组成4个共价键时,缺少一个价电子,形成一个空位。因为,3价元素形成的空位能级非常靠近价带顶的能量,在价电子共有化运动中,相邻的原子上的价电子就很容易来填补这个空位(较跃迁至禁带以上的空带容易的多),从而产生一个空穴。所以每一个三价杂质元素的原子都能接受一个价电子,而在价带中产生一个空穴。27.砷掺杂Si的导电机理:本征半导体中掺入5价元素(磷,砷,锑)就可使晶体中的自由电子的浓度极大地增加。因为5价元素的原子有5个价电子,当它顶替晶格中的一个4价元素的原子时,余下了1个价电子变成多余的,此电子的能级非常靠近导带底,非常容易进入导带成为自由电子,因而导带中的自由电子较本征半导体显著增多,导电性能大幅度提高。28.介质损耗的形式及造成这几种损耗的原因:1)电导(或漏导)损耗实际使用的电介质都不是理想的绝缘体,都或多或少地存在一些弱联系带电离子或空穴,在E作用下产生漏导电流,发热,产生损耗。低场强下,存在离子电导;高场强下,电子电导。离子电导:本征电导和杂质电导。2)极化损耗:介质极化时,有些极化形式可引起损耗。一方面:极化过程中离子要在E作用下克服热运动消耗能量,引起损耗。另一方面:松弛极化建立时间较长,极化跟不上外E的变化(特别是交流频率较高时),所造成的电矩往往滞后于E,即E达最大时,极化引起的极化电荷未达最大,当E开始减小时,极化仍继续增至最大值后才开始减小,当E为0时,极化尚未完全消除,当外E反向时,极板上遗留的部分电荷中和了电源对极板充电的部分电荷,并以热的形式散发,产生损耗。3)电离损耗又称游离损耗,是气体引起的,含气孔的固体电介质,外E大于气体电离所需的E时,气体发生电离吸收能量,造成损耗。电离损耗可使电介质膨胀,可导致介质热破坏和促使化学破坏,因此必须降低电介质中的气孔。另外还有结构损耗和宏观结构不均匀造成的损耗。29.电畴转向时引起较大内应力,这种转向不稳定。当外加电场撤去后,则有小部分电畴偏离极化方向,恢复原位,而大部分电畴则停留在新转向的极化方向上,也就形成了剩余极化。30.如何评价材料的导电能力?如何界定超导、导体、半导体和绝缘体材料?用电阻率ρ或电阻率σ评价材料的导电能力。按材料的导电能力(电阻率),人们通常将材料划分为:5)()超导体()()导体()()半导体()()绝缘体(m.104m.10103m.10102m.1012728-82831、自由电子的平均能量与温度有何种关系?温度如何影响费米能级?根据自由电子近似下的量子导电理论,试分析温度如何影响材料的导电性。①温度升高,自由电子的平均能量升高。②温度升高时,因为部分电子被激发,费米半径减小,材料原子的费米面略微下
本文标题:材料物理性能复习资料
链接地址:https://www.777doc.com/doc-4244673 .html