您好,欢迎访问三七文档
-1-第九节函数模型及其应用【考纲下载】1.了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义.2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.1.三种函数模型性质比较y=ax(a1)y=logax(a1)y=xn(n0)在(0,+∞)上的单调性单调递增函数单调递增函数单调递增函数增长速度越来越快越来越慢相对平稳图象的变化随x值增大,图象与y轴接近平行随x值增大,图象与x轴接近平行随n值变化而不同2.几种常见的函数模型(1)一次函数模型:y=ax+b,(a≠0);(2)反比例函数模型:y=kx(k≠0);(3)二次函数模型:y=ax2+bx+c(a≠0);(4)指数函数模型:y=N(1+p)x(x0,p≠0)(增长率问题);(5)对数函数模型y=blogax(x0,a0且a≠1);(6)幂函数模型y=axn+b(a,b为常数,a≠0);(7)y=x+ax型(x≠0);(8)分段函数型.1.直线上升、指数增长、对数增长的增长特点是什么?-2-提示:直线上升:匀速增长,其增长量固定不变;指数增长:先慢后快,其增长量成倍增加,常用“指数爆炸”来形容;对数增长:先快后慢,其增长速度缓慢.2.函数y1=1100ex,y2=100lnx,y3=x100,y4=100×2x中,随x的增大而增大速度最快的函数是哪一个?提示:y1=1100ex.1.下表是函数值y随自变量x变化的一组数据,它最可能的函数模型是()x45678910y15171921232527A.一次函数模型B.幂函数模型C.指数函数模型D.对数函数模型解析:选A根据已知数据可知,自变量每增加1,函数值增加2,因此函数值的增量是均匀的,故为一次函数模型.2.某种细菌在培养过程中,每15分钟分裂一次(由一个分裂成两个),这种细菌由1个繁殖成4096个需经过()A.12小时B.4小时C.3小时D.2小时解析:选C由题意知24t=4096,即16t=4096,解得t=3.3.据调查,苹果园地铁的自行车存车处在某星期日的存车量为4000辆次,其中变速车存车费是每辆一次0.3元,普通车存车费是每辆一次0.2元,若普通车存车数为x辆次,存车费总收入为y元,则y关于x的函数关系是()A.y=0.1x+800(0≤x≤4000)B.y=0.1x+1200(0≤x≤4000)C.y=-0.1x+800(0≤x≤4000)D.y=-0.1x+1200(0≤x≤4000)解析:选Dy=0.2x+(4000-x)×0.3=-0.1x+1200.4.(2014·渭南模拟)某类产品按工艺共分10个档次,最低档次产品每件利润为8元.每提高一个档次,每件利润增加2元.用同样工时,可以生产最低档产品60件,每提高一个档次将少生产3件产品.则获得利润最大时生产产品的档次是________.解析:由题意,第k档次时,每天可获利润为:y=[8+2(k-1)][60-3(k-1)]=-6k2-3-+108k+378(1≤k≤10),配方可得y=-6(k-9)2+864,∴k=9时,获得利润最大.答案:95.某种商品进价为每件100元,按进价增加25%出售,后因库存积压降价,按九折出售,每件还获利________元.解析:九折出售时价格为100×(1+25%)×90%=112.5元,此时每件还获利112.5-100=12.5元.答案:12.5高频考点考点一一次函数、二次函数模型1.由于受到新课标中概率模块的冲击,实际应用题被概率问题占据了位置,逐步退出命题的热点,但以二次函数为模型的应用题还是常出现在高考试题中,既有选择题、填空题,也有解答题,难度适中,属中档题.2.高考对一次函数、二次函数模型的考查主要有以下两个命题角度:(1)单一考查一次函数或二次函数模型的建立及最值问题;(2)以分段函数的形式考查一次函数和二次函数.[例1](1)(2013·陕西高考)在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x为________m.(2)(2011·湖北高考)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/时)是车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/时.研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.①当0≤x≤200时,求函数v(x)的表达式;②当车流密度x为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/时)f(x)=x·v(x)可以达到最大,并求出最大值.(精确到1辆/时)-4-[自主解答](1)设内接矩形另一边长为y,则由相似三角形性质可得x40=40-y40,解得y=40-x,所以面积S=x(40-x)=-x2+40x=-(x-20)2+400(0x40),当x=20时,Smax=400.(2)①由题意,当0≤x≤20时,v(x)=60;当20≤x≤200时,设v(x)=ax+b,再由已知得200a+b=0,20a+b=60,解得a=-13,b=2003.故函数v(x)的表达式为v(x)=60,0≤x≤20,13-x,20≤x≤200.②依题意并由(1)可得f(x)=60x,0≤x≤20,13x-x,20≤x≤200.当0≤x≤20时,f(x)为增函数,故当x=20时,其最大值为60×20=1200;当20≤x≤200时,f(x)=13x(200-x)≤13x+-x22=100003,当且仅当x=200-x,即x=100时,等号成立.所以当x=100时,f(x)在区间[20,200]上取得最大值100003.综上,当x=100时,f(x)在区间[0,200]上取得最大值100003≈3333,即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/时.[答案](1)20一次函数、二次函数模型问题的常见类型及解题策略(1)直接考查一次函数、二次函数模型.解决此类问题应注意三点:①二次函数的最值一般利用配方法与函数的单调性解决,但一定要密切注意函数的定义域,否则极易出错;②确定一次函数模型时,一般是借助两个点来确定,常用待定系数法;③解决函数应用问题-5-时,最后要还原到实际问题.(2)以分段函数的形式考查.解决此类问题应关注以下三点:①实际问题中有些变量间的关系不能用同一个关系式给出,而是由几个不同的关系式构成,如出租车票价与路程之间的关系,应构建分段函数模型求解;②构造分段函数时,要力求准确、简洁,做到分段合理、不重不漏;③分段函数的最值是各段的最大(或最小)者的最大者(最小者).1.(2013·上海高考)甲厂以x千克/小时的速度匀速生产某种产品(生产条件要求1≤x≤10),每一小时可获得的利润是1005x+1-3x元.(1)求证:生产a千克该产品所获得的利润为100a·5+1x-3x2元;(2)要使生产900千克该产品获得的利润最大,问:甲厂应该选取何种生产速度?并求此最大利润.解:(1)证明:生产a千克该产品所用的时间是ax小时,∵每一小时可获得的利润是1005x+1-3x元,∴获得的利润为1005x+1-3x×ax元.因此生产a千克该产品所获得的利润为100a5+1x-3x2元.(2)生产900千克该产品获得的利润为90000·5+1x-3x2元,1≤x≤10.设f(x)=-3x2+1x+5,1≤x≤10.则f(x)=-31x-162+112+5,当且仅当x=6取得最大值.故获得最大利润为90000×6112=457500元.因此甲厂应以6千克/小时的速度生产,可获得最大利润457500元.2.据气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t(h)的函数图象如图所示,过线段OC上一点T(t,0)作横轴的垂线l,梯形OABC在直线l左侧部分的面积即为t(h)内沙尘暴所经过的路程s(km).(1)当t=4时,求s的值;-6-(2)将s随t变化的规律用数学关系式表示出来;(3)若N城位于M地正南方向,且距M地650km,试判断这场沙尘暴是否会侵袭到N城,如果会,在沙尘暴发生后多长时间它将侵袭到N城?如果不会,请说明理由.解:(1)由图象可知:当t=4时,v=3×4=12,∴s=12×4×12=24.(2)当0≤t≤10时,s=12·t·3t=32t2;当10t≤20时,s=12×10×30+30(t-10)=30t-150;当20t≤35时,s=12×10×30+10×30+(t-20)×30-12×(t-20)×2(t-20)=-t2+70t-550.综上,可知s=32t2,t∈[0,10],30t-150,t∈,20],-t2+70t-550,t∈,35].(3)沙尘暴会侵袭到N城.∵t∈[0,10]时,smax=32×102=150650,t∈(10,20]时,smax=30×20-150=450650,∴当t∈(20,35]时,令-t2+70t-550=650.解得t1=30,t2=40.∵20t≤35,∴t=30.∴沙尘暴发生30h后将侵袭到N城.考点二函数y=x+ax模型的应用[例2]为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系C(x)=k3x+5(0≤x≤10),若不建隔热层,每年能源消耗费用为8万元,设f(x)为隔热层建造费用与20年的能源消耗费用之和.(1)求k的值及f(x)的表达式;(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.[自主解答](1)由已知条件得C(0)=8,则k=40,因此f(x)=6x+20C(x)=6x+8003x+5(0≤x≤10).(2)f(x)=6x+10+8003x+5-10≥26x+108003x+5-10=70(万元),-7-当且仅当6x+10=8003x+5,即x=5时等号成立.所以当隔热层厚度为5cm时,总费用f(x)达到最小值,最小值为70万元.【方法规律】把实际问题数学化、建立数学模型一定要过好的三关(1)事理关:通过阅读、理解,明确问题讲的是什么,熟悉实际背景,为解题找出突破口;(2)文理关:将实际问题的文字语言转化为数学符号语言,用数学式子表达数学关系;(3)数理关:在构建数学模型的过程中,对已知数学知识进行检索,从而认定或构建相应的数学模型.某村计划建造一个室内面积为800m2的矩形蔬菜温室,在温室内,沿左、右两侧与后侧内墙各保留1m宽的通道,沿前侧内墙保留3m宽的空地,当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大面积是多少?解:设温室的左侧边长为xm,则后侧边长为800xm.∴蔬菜种植面积y=(x-4)800x-2=808-2x+1600x(4x400).∵x+1600x≥2x·1600x=80,∴y≤808-2×80=648.当且仅当x=1600x,即x=40时取等号,此时800x=20,y最大值=648(m2).即当矩形温室的边长各为40m、20m时,蔬菜的种植面积最大,最大面积是648m2.考点三指数函数模型[例3]已知某物体的温度θ(单位:摄氏度)随时间t(单位:分钟)的变化规律是θ=m·2t+21-t(t≥0,并且m0).(1)如果m=2,求经过多长时间,物体的温度为5摄氏度;(2)若物体的温度总不低于2摄氏度,求m的取值范围.[自主解答](1)若m=2,则θ=2·2t+21-t=22t+12t,当θ=5时,2t+12t=52
本文标题:【创新方案】2015高考数学一轮复习(知识回扣+热点突破+能力提升)函数模型及其应用 理 北师大版
链接地址:https://www.777doc.com/doc-4198836 .html