您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 数字电子基础第二章答案
习题22-1试用列真值表的方法证明下列等式成立。(1)A+BC=(A+B)(A+C)(2)AABAB(3)0AA(4)1AA(5)()ABCABAC(6)1ABABAB解:(1)设1FABC2()()FABACABC1F2F0000000100010000111110011101111101111111(2)1FAAB2FABAB1F2F0000011110111111(3)10FA2FAA1F2F000111(4)11FA2FAA1F2F011100(5)1()FABC2FABACABC1F2F0000000100010000110010000101111101111100(6)1FAB2FAB31FABAB1F2F3F001110100010111110002-2分别用反演规则和对偶规则求出下列函数的反函数式和对偶式。(1)[()]FABCDEB(2)()()FABACCDE(3)FABCDE(4)()0FABCABC(5)FAB解:(1)[()]FABCDEB'[()]FABCDEB(2)()[()]FABACCDE'()[()]FABACCDE(3)()FABCDE'FABCDE(4)()1FABCABC'()1FABCABC(5)FAB'FABAB2-3用公式法证明下列各等式。(1)()ABACBCDABACD(2)()()BCDDBCADBBD(3)ACABBCACDABC(4)ABBCCAABBCCA(5)ABCABC(6)ABAB(7)()()ACDACDACAD解:(1)()CBCDABACBCBCDABACBCDABACD左边=AB+A右边(2)()()()BCADBBCDBCADBBCDADBBD左边=BC+D+D右边(3)CABBCACDCABBCACACDABC左边=AA右边(4)BCCAABBCACCABCABACBCAB左边=AB右边(5)CABCABC左边=AB右边(6)BABABAB左边=A右边(7)()()()()DAACDAACDACDACACADADACAD左边=AC右边2-4对于图P2-4(a)所示的每一个电路:(1)写出电路的输出函数表达式,列出完整的真值表。(2)若将图(b)所示的波形加到图(a)所示的电路的输入端,试分别画出12,FF的输出波形。解:(1)1FABBC2FABCABC1F2F0000000111010010110010001101001100011101(2)ABC1F2F2-5已知逻辑函数的真值表分别如表P2-5(a),(b),(c)所示。(1)试分别写出各逻辑函数的最小项之和表达式,最大项之积表达式。(2)分别求出各逻辑函数的最简与或式,最简或与式。(a)ABC1F00000101001110010111011111100000(b)ABC2F00000101001101001001011101111110(c)ABC3F00000001001110010111011100100111解:(1)(a)最小项之和的表达式为:1FABCABCABC最大项之积表达式为:1()()()()()FABCABCABCABCABC(b)最小项之和的表达式为:1FABCABCABCABC最大项之积表达式为:1()()()()FABCABCABCABC(c)最小项之和的表达式为:1FABCABCABCABC最大项之积表达式为:1()()()()FABCABCABCABC(2)(a)最简与或式:1FABAC最简或与式:1()FABC(b)最简与或式:1FACBC最简或与式:1()()FACBC(c)最简与或式:1FBCAC最简或与式:1()()FBCAC2-6对于图P2-6所示的每一个电路:(1)试写出未经化简的逻辑函数表达式。(2)写出各函数的最小项之和表达式。解:(1)(a)1FABABC(b)2FABBCAC(c)3FABBAAC(d)4FABCDABC(2)各式的最小项表达式:(a)1FC(b)2FAC(c)3FABC(d)4FABC2-7用代数法化简下列逻辑函数,求出最简与或式。(1)FABBAB(2)FABCABC(3)FABCAB(4)FABCDABDACD(5)()()FABACDADBCAB(6)()()FACCDABBCBADCE(7)FACABCACDCD(8)()()()FABCABCABC(9)()()FBCABCEBADADBADAD(10)()FACACDABEFBDEBCDEABEF解:(1)FAB(2)1F(3)1F(4)FAD(5)0F(6)FABCDE(7)FACD(8)FABC(9)()FBCAD(10)()FACADBDEAEF2-8判断图P2-8中个卡诺图的圈法是否正确。如有错请改正,并写出最简与或表达式。解:各卡诺图均有错误,改正后的各卡诺图圈法如图解2-5所示。(a)(b)(c)正确图示为:将原图的10对应的一列4个1圈起来,其他不变。(d)正确图示为:将00行和10行的最后两个1圈起来,其他不变。(e)正确图示为:将00行的中间两个1和10行的中间两个1圈起来,再将11行的4个1圈起来,其他不见。(f)正确图示为:去掉00列的叉的圈,把11列的两个1和10列的两个叉圈起来,其他不变。(g)正确图示为:把00列的两个1和10列的连个1圈起来,把00行的两个叉,1和10行的两个叉,1圈起来,然后把10行的四个圈起来,其他不变。2-9用卡诺图化简法将下列函数化简为最简与或式,并画出全部由与非门组成的逻辑电路图。(1)(,,)(0,1,2,5,7)FABCm(2)(,,,)(2,3,6,7,8,10,12,14)FABCDm(3)(,,,)(2,3,4,5,8,9,14,15)FABCDm(4)(,,,,)(0,4,18,19,22,23,25,29)FABCDEm(5)(,,,)(0,1,2,3,6,8,10,11,12)FABCDm(6)FABABDACBCD(7)FACDBCBDABACBCBD解:首先写出画出卡诺图,,圈“1”格,每个卡诺图圈对应写出一个与项,从而求出最简与或式。得到各式的最简与或式与逻辑电路图分别如下:(1)最简式:FABACAC逻辑电路图:ABCF(2)FACAD逻辑电路图:ACDF(3)FABCABCABCABC逻辑电路图:ABFC(4)FABDEABDEABD逻辑电路图:ABDEF(5)FABCABCACDBD逻辑电路图:ACBDF(6)FABAC逻辑电路图:ABCF(7)FBCAD逻辑电路图:ABCDF2-10用卡诺图化简法将下列函数化简为最简或与式,并画出全部由或非门组成的逻辑电路图。(1)(,,,)(0,2,5,7,8,10,13,15)FABCDm(2)(,,,)(0,2,3,7,8,10,11,13,15)FABCDM(3)(,,,,)(0,1,3,4,5,7,10,14,19,23,26,27,30,31)FABCDEM(4)()FABABABABC(5)()()()()FABABCACBCD解:将各逻辑函数分别填入卡诺图,圈“0”格,每个卡诺图对应写一个或项,从而求得最简或与式,进而求得或非式。(1)最简或与式:1()()FBDBDBDBDBDBD逻辑电路图:BDF(2)最简或与式:2()()()FBDCDABDBDCDABDBDCDABD逻辑电路图:ABCDF(3)最简或与式:3()()()()FABDBDEABEADE逻辑电路图:ABDEF(4)最简或与式:4()()FACBCACBCACBC逻辑电路图:ABCF(5)最简或与式:5()()FABACABACABAC逻辑电路图:FABC2-11已知试求1FABDC,2()()()FBCABDCD,试求:(1)12aFFF之最简与或式和最简与非-非与式。(2)12bFFF之最简或与式和之最简或非-或非式。(3)12cFFF之最简与或非式。解:两函数之间的与,或,异或运算可由两个函数的卡诺图运算(即两个卡诺图中相应的方格作与,或,异或运算)来实现,分别求出aF,bF,cF之卡诺图,分别如下图所示:aF图CDAB0010111000011110bF图CDAB0010111000011110cF图CDAB0010111000011110解:(1)求出各函数的表达式为:a12FFFABCBCD00100110000000001111111111110100110110011111010012()()bFFFACDBCD12cFFFBCDABDBCD2-12设有三个输入变量A,B,C,试按下述逻辑问题列出真值表,并写出它们各自的最小项表达式,最大项表达式。(1)当A+B=C时,输出bF为1,其余情况为0。(2)当ABBC时,输出CF为1,其余情况下为0。解:aF,bF,cF随A,B,C变化的真值表如下图所示:ABCaFbFcF000111001000010001011010100000101011110000111111(1)m(0,3,5,7)(1,2,4,6)bFM(2)m(0,2,5,7)(1,3,4,6)cFM2-13将下列具有无关项的逻辑函数化简为与或表达式。(1)(,,,)(0,1,4,7,9,10,13)(2,5,8,12,15)FABCDMd(2)(,,,)(1,3,6,8,11,14)(2,4,5,13,15)FABCDmd(3)(,,,)(0,2,4,5,10,12,15)(8,14)FABCDmdFBCDBCD(2)FABDBCDACDABCD(3)FCDBDADABCABC2-14将下列具有约束条件的逻辑函数化简为最简或与表达式:(1)FABCABCABCDABCD变量ABCD不可能出现相同的值(2)()0FABCDABCACDABCD解:(1)FACBD(2)FC
本文标题:数字电子基础第二章答案
链接地址:https://www.777doc.com/doc-4024981 .html