您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 电气安装工程 > 110KV变电所电气部分课程设计
目录前言························································································(1)1变电所原始资料··································································(2)2变压器的设计·····································································(3)2.1主变压器的选择·································································(3)2.2所用变压器的选择······························································(4)3电气主接线的设计·······························································(5)3.1电气主接线方案的确定·························································(5)3.2110KV侧电气主接线的选择····················································(6)3.3变电所的无功补偿·······························································(7)4短路电流计算······································································(7)4.1短路计算的原则·································································(7)4.2短路电流的计算方法和步骤····················································(8)4.3短路电流计算结果表····························································(9)4.4短路电流的计算·································································(9)4.5短路电流计算列表······························································(9)5电气设备的选择··································································(10)5.1电气设备的选择原则···························································(11)5.2电气设备选择的技术条件······················································(11)5.3主要电气设备的选择···························································(12)5.410KV高压开关柜选择···························································(14)6配电装置的选择··································································(14)6.1高压配电装置的选择···························································(14)1.附录1短路电流的计算及程序说明······································(17)2.附录2电气设备的选择······················································(20)3.附录3主接线图······························································(29)4.参考文献···········································································(29)1前言电力工业是能源工业、基础工业,在国家建设和国民经济发展中占据十分重要的位置,是时间国家现代化的战略重点。电能是一种无形的、不能大量储存的二次能源。电能的发、变、送、配和用电,几乎是在同一瞬间完成的,须随时保持功率平衡。要满足国民经济发展的要求就必须加强电网建设,而变电站建设就是电网建设中的重要一环。在变电站的设计中,既要求所变电能能很好地服务于工业生产,又要切实保证工厂生产和生活的用电的需要,并做好节能工作,就必须达到以下基本要求:安全在变电过程中,不发生人身事故和设备事故。可靠所变电能应满足电能用户对用电的可靠性的要求。优质所变电能应满足电能用户对电压和频率等质量的要求。经济变电站的投资要少,输送费用要低,并尽可能地节约电能、减少有色金属的消耗量和尽可能地节约用地面积。110KV变电站属于高压网络,该地区变电所所涉及方面多,考虑问题多,分析变电所担负的任务及用户负荷等情况,选择所址,利用用户数据进行负荷计算,确定用户无功功率补偿装置。同时进行各种变压器的选择,从而确定变电站的接线方式,再进行短路电流计算,选择送配电网络及导线,进行短路电流计算。选择变电站高低压电气设备,为变电站平面及剖面图提供依据。本变电所的初步设计包括了:(1)总体方案的确定(2)负荷分析(3)短路电流的计算(4)高低压配电系统设计与系统接线方案选择(5)继电保护的选择与整定(6)防雷与接地保护等内容。随着电力技术高新化、复杂化的迅速发展,电力系统在从发电到供电的所有领域中,通过新技术的使用,都在不断的发生变化。变电所作为电力系统中一个关键的环节也同样在新技术领域得到了充分的发展。[关键词]变电站、变压器、接线、高压网络、配电系统21变电所原始资料建设性质及规模:为满足某县城区及相关单位用电,建一座110KV降压变电所。所址海拔为200m,为非地震多发区。最高气温+39℃,最低气温为-18℃,最热月平均最高气温为30℃。⑴110KV线路进线2回。⑵10KV线路的同时系数为0.9,线损率5%。⑶10KV线路8回,远期发展2回。如下图⑷说明:①系统S容量(水电)Smax=1000MVA;Smin=880MVA;系统S阻抗Xsmax=1.58;Xsmin=1.25。②系统低压侧功率因数要求不低于0.9。电压等级负荷名称穿越功率(MW)最大负荷(MW)负荷组成(%)COSΦ同时率(%)线损率(%)近期远景近期远景一级二级三级110KV新黄线35新区线3510KV机械厂食品厂2.41.1321510603025600.80.885855510KV汽配厂1.222040400.885510KV城区2..542040400.885510KV工业园5.283040300.885510KV自来水厂0.50.83050200.885510KV生活区0.5130700.885510KV转供电0.81.820800.885510KV发展线11.52060200.885510KV发展线21.52060200.885532变压器的设计2.1主变压器的选择⑴主变压器台数的选择据资料分析以及线路来看,为保障对Ⅰ、Ⅱ类负荷的需要,以及扩建的可能性,至少需要安装两台主变以提高对负荷供电的可靠性,以便当其中一台主变故障或者检修时,另一台能继续供电约为1.2倍最大负荷的容量。⑵主变压器的容量的选择近期负荷:∑PM=25.6MW远期总负荷:∑PM=14.2MW用电负荷的总视在功率为∑SM远期:∑SM=∑PM/COSφ=25.6/0.8=32MVA主变压器的总容量应满足:Sn≥K∑SM/S=0.9×32/0.95=30.32MVA(K为同时率,根据资料取0.9,线损5%)满载运行且留裕10%后的容量:S=Sn/2×(1+10%)=30.32/2×1.1=16.676MVA变电所有两台主变压器,考虑到任意一台主变停运或检修时,另一主变都要满足的容量:Sn≥30.32×70%=21.224MVA所以选每台主变容量:Sn=21.224MVA为了满足系统要求,以及通过查表,确定每台主变的装机容量为:25MVA总装机容量为2×25MVA=50MVA考虑周围环境温度的影响:θp=(θmax+θmin)/2=(39-18)/2=10.5℃Kθ=(15-10.5)/100+1=1.045根据Sn≥0.6K∑SM/Kθ=0.6×0.9×32/1.055=16.38MVA即Sn=25MVA>16.38MVA满足要求。⑶主变压器型式的选择相数的选择:电力系统中大多数为三相变压器,三相变压器较之于同容量的单相变压器组,其金属材料少20%~25%,运行电能损耗少12%~15%,并且占地面积少,因此考虑优先采用。本变电所设在城郊附近,不受运输条件限制,所以采用三相变压器。绕组的确定:该变电所只有两个电压等级(110KV和10KV),且自耦变压器一般用在220KV以上的变电所中,所以这里选择双绕组变压器。绕组接线方式的选择:4变压器绕组的连接方式必须和系统电压的连接方式相位一致,否则不能并联运行。我国110KV及以上变压器绕组都选用Y连接,35KV及以下电压,绕组都选择△连接方式,所以该变电站的两台主变,高压侧(110KV)采用Y连接,低压侧(10KV)采用△连接方式。根据110KV变电所设计指导,以上选择符合系统对变电所的技术要求,两台相同的变压器同时投入时,可选择型号为SF9-25000/110的主变,技术参数如下:表2.1主变压器的技术参数型号高压低压空载电流空载损耗负载电流阻抗电压连接组别SF9-25000/110110±2×2.5%10.50.225.2110.710.5Yn,d112.2所用变压器的选择2.2.1所用变压器的选择根据《35~110KV变电所设计规范》规定,在有两台及以上主变压器的变电所中,宜装设两台容量相同可互为备用的所用变压器,分别接到母线的不同分段上。变电所的所用负荷,一般都比较小,其可靠性要求也不如发电厂那样高。变电所的主要负荷是变压器冷却装置、直流系统中的充电装置和硅整流设备、油处理设备、检修工具以及采暖、通风、照明、供水等。这些负荷容量都不太大,因此变电所的所用电压只需0.4KV一级,采用动力与照明混合供电方式。380V所用电母线可采用低压断路器(即自动空气开关)或闸刀进行分段,并以低压成套配电装置供电。本变电所所用容量为100KVA,选用两台型号为S9-100/10的三相油浸自冷式铜线变压器,接入低压侧,互为暗备用。参数如下表:表2.2站用电变压器参数表产品型号额定容量(KVA)高压侧(KV)低压侧(KV)接线组方式短路损耗(W)短路电压(%)空载损耗(W)空载电流(%)S9-100/10100100.4Y,yn0150042901.62.2.2所用变压器低压侧接线所用电系统采用380/220V中性点直接接地的三相四线制,动力与照明合用一个电5源,所用变压器低压侧接线采用单母线分段接线方式,平时分裂运行,以限制故障范围,提高供电可靠性。380V所用电母线可采用低压断路器(即自动空气开关)或闸刀进行分段。3电气主接线的设计发电厂、变电站主接线须满足以下基本要求:(1)运行的可靠断路器检修时是否影响供电;设备和线路故障检修时,需要停电的用户数目的多少和停电时间的长短,以及能否保证对重要用户的
本文标题:110KV变电所电气部分课程设计
链接地址:https://www.777doc.com/doc-3990940 .html