您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 工程监理 > p05测量误差的基本知识
第五章测量误差分析与精度评定§5.1测量误差概述§5.2衡量精度的标准§5.3误差传播定律§5.4不等精度观测精度评定测量实践中可以发现,测量结果不可避免的存在误差,比如:1、对同一量多次观测,其观测值不相同。2、观测值之和不等于理论值:三角形α+β+γ≠180°闭合水准∑h≠0一、测量误差的来源等精度观测:观测条件相同的各次观测。不等精度观测:观测条件不相同的各次观测。1.仪器误差2.观测误差3.外界条件的影响观测条件粗差:因读错、记错、测错造成的错误。二、测量误差的分类在相同的观测条件下,无论在个体和群体上,呈现出以下特性:误差的绝对值为一常量,或按一定的规律变化;误差的正负号保持不变,或按一定的规律变化;误差的绝对值随着单一观测值的倍数而积累。1、系统误差—误差的大小、符号相同或按一定的规律变化。例:钢尺—尺长、温度、倾斜改正水准仪—i角经纬仪—c角、i角注意:系统误差具有累积性,对测量成果影响较大。消除和削弱的方法:(1)校正仪器;(2)观测值加改正数;(3)采用一定的观测方法加以抵消或削弱。在相同的观测条件下,对某个固定量作一系列的观测,如果观测结果的差异在正负号及数值上,都没有表现出一致的倾向,即没有任何规律性,这类误差称为偶然误差。2、偶然误差偶然误差的特性iilX真误差:理论值与观测值之差例对一个角度观测如下:③绝对值相等的正、负误差出现的机会相等,可相互抵消;④同一量的等精度观测,其偶然误差的算术平均值,随着观测次数的增加而趋近于零,即:0limnn①在一定的条件下,偶然误差的绝对值不会超过一定的限度;(有界性)②绝对值小的误差比绝对值大的误差出现的机会要多;(密集性、区间性)(抵偿性)误差处理的原则:1、粗差:舍弃含有粗差的观测值,并重新进行观测。2、系统误差:按其产生的原因和规律加以改正、抵消和削弱。3、偶然误差:根据误差特性合理的处理观测数据减少其影响。返回精度:又称精密度,指在对某量进行多次观测中,各观测值之间的离散程度。评定精度的标准中误差容许误差相对误差衡量精度的标准一、中误差定义在相同条件下,对某量(真值为X)进行n次独立观测,观测值l1,l2,……,ln,偶然误差(真误差)Δ1,Δ2,……,Δn,则中误差m的定义为:nmxliin,...2232221式中式中:例:试根据下表数据,分别计算各组观测值的中误差。解:第一组观测值的中误差:第二组观测值的中误差:,说明第一组的精度高于第二组的精度。说明:中误差越小,观测精度越高5.210)4(2)1()2(34)3(12022222222221m2.310)1()3(017)1(0)6(2)1(22222222222m21mm定义由偶然误差的特性可知,在一定的观测条件下,偶然误差的绝对值不会超过一定的限值。这个限值就是容许(极限)误差。二、容许误差(极限误差)测量中通常取2倍或3倍中误差作为偶然误差的容许误差;即Δ容=2m或Δ容=3m。极限误差的作用:区别误差和错误的界限。相对误差K是中误差的绝对值m与相应观测值D之比,通常以分母为1的分式来表示,称其为相对(中)误差。即:mDDmK1三、相对误差例已知:D1=100m,m1=±0.01m,D2=200m,m2=±0.01m,求:K1,K2解:20000120001.010000110001.0222111DmKDmK观测值精度评定观测值精度评定的标准中误差容许误差相对误差一、算术平均值(最或是值)是指对某未知量进行n次等精度观测,其观测值分别为,将这些观测值取平均值作为该未知量的最可靠的数值。nlll、、、21xnlnlllxn][21二、观测值中误差计算1.按观测值的改正值计算中误差nnlxvlxvlxv2211a.观测值的改正值的计算观测值的改正值:即算术平均值与观测值之差b.按观测值的改正值计算中误差1][nvvmc.按观测算术平均值的中误差计算(白塞尔公式)nmnnvvmx)1(][例对某一段水平距离观测了6次,试求:例设用经纬仪测量某个角6测回,观测之列于中。试求观测值的中误差及算术平均值中误差。算术平均值中误差是:1.1)16(634)1(nnVVnmmx返回概念误差传播定律:阐述观测值的中误差与观测值函数中误差的关系的定律。函数形式倍数函数和差函数线性函数一般函数误差传播定律设非线性函数的一般式为:式中:为独立观测值;为独立观测值的中误差。求函数的全微分,并用“Δ”替代“d”,得),,,,(321nxxxxfzixnmmmm,,,,321nxnxxZxfxfxf)()()(2121一、一般函数)()(22)(11)()2()2(22)2(11)2()1()1(22)1(11)1(kxnnkxkxkZxnnxxZxnnxxZfffffffff式中:是函数F对的偏导数,当函数式与观测值确定后,它们均为常数ixixf),,2,1(niiifxf为了求得函数和观测值之间的中误差关系,假设对进行了k次观测,则上式可写为:ix将以上各式等号两边平方,再相加得:njijixjxijixnnxxZfffff)(1,)2(2)2(222)2(121)2(][][][][][将上式两端各除于k,可得:njijixjxijixnnxxZkffkfkfkfk)(1,)2(2)2(222)2(121)2(][][][][][当k值为有限次时,则:22222221212nnZmfmfmfm2222222121nnzmfmfmfm即:误差传播定律的一般形例已知:测量斜边D′=50.00±0.05m,测得倾角α=15°00′00″±30″求:水平距离D中误差mD。解:1.函数式2.全微分3.求中误差dDDddD)sin()(coscosDD22222]03)15sin50[(]05.0)15[(cos])sin[(])[(cosmDmmDD)(048.0mmD误差传播定的几个主要公式:函数名称函数式函数的中误差倍数函数和差函数线性函数一般函数nxxxz21nnxkxkxkz2211),,(21nxxxfZkxzxzkmm22221nzmmmm2222222121nnzmkmkmkm2222222121)()()(nnZmxfmxfmxfm返回二、误差传播定律的应用1.列出观测值函数的表达式:2.对函数式全微分,得出函数的真误差与观测值真误差之间的关系式:式中,是用观测值代入求得的值。),,(21nxxxfZnxnxxZdxfdxfdxfd)()()(2121)(ixf求观测值函数中误差的步骤:三、运用误差传播定律的步骤3、根据误差传播率计算观测值函数中误差:注意:在误差传播定律的推导过程中,要求观测值必须是独立观测值。22222221212)()()(nnZmxfmxfmxfm设未知量的真值为x,可写出观测值的真误差公式为(i=1,2,…,n)将上式相加得或故nxlllnn)(2121nxl][][xnln推导过程:xlii由偶然误差第四特性知道,当观测次数无限增多时,即(算术平均值)说明,n趋近无穷大时,算术平均值即为真值。0limnnLnlxn,返回
本文标题:p05测量误差的基本知识
链接地址:https://www.777doc.com/doc-3967659 .html