您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 高中数学选修1-2《统计案例》知识点讲义
第一章统计案例一、回归分析的基本思想及其初步应用1、数学变量相关关系的定义:当一个或几个相互联系的变量取一定的数值时,与之相对应的另一变量的值虽然不确定,但它仍按某种规律在一定的范围内变化。变量间的这种相互关系,称为具有不确定性的相关关系.(1)按方向分类正相关:两个变量的变化趋势相同,从散点图可以看出各点散布的位置是从左下角到右上角的区域,即一个变量的值由小变大时,另一个变量的值也由小变大。负相关:两个变量的变化趋势相反,从散点图可以看出各点散布的位置是从左上角到右下角的区域,即一个变量的值由小变大时,另一个变量的值由大变小。正相关负相关不相关(2)相关性系数r(在《必修3》中有介绍)用相关系数r来衡量两个变量之间的相关关系12211niiinniiiixxyyrxxyy2、两变量之间的关系存在两种不同的类型(1)相关关系——非确定性关系(2)函数关系——确定性关系3、回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法。其基本步骤是:①画出两个变量的散点图;②求回归直线方程;③并用回归直线方程进行预报。4、回归直线方程:axbyxbyaxnxyxnyxxxyyxxbniiniiiniiniii,)())((122112110.00,2,.bbrxy说明:回归系数因为当时,相关系数这时不具有线性相关关系.称为样本点的中心,回归直线必定经过样本点的中心例如:,.iybxaeabeeyy4、线性回归模型用来表示其中和为模型的未知参数,称为随机误差残差:5、相关指数2R是用来刻画回归效果的,2R越大,残差平方和越小,模型的拟合效果就越好。二、独立性检验的基本思想及其初步应用1、列联表假设有两个分类变量X和Y,它们的值域分另为{x1,x2}和{y1,y2},其样本频数列联表为:y1y2总计x1aba+bx2cdc+d总计a+cb+da+b+c+d222=nadbcKnabcdabcdacbd、随机变量,其中为样本容量.221211niiiniiyyRyy3、独立性检验(1)利用随机变量2K来判断“两个分类变量有关系”的方法称为独立性检验,并且能较精确地给出这种判断的可靠程度。(2)具体的做法是,由表中的数据算出随机变量K2的值。K2的值越大,说明“X与Y有关系”成立的可能性越大。下表k是观测值,概率P为犯错误的概率。2()PKk0.500.400.250.150.100.050.0250.0100.0050.001k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828例如:4、利用列联表直接计算发现和相差很大,就判断两个分类变量之间有关系。aabccd
三七文档所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
本文标题:高中数学选修1-2《统计案例》知识点讲义
链接地址:https://www.777doc.com/doc-3645790 .html