您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > PPT模板库 > 2016年中考数学模拟试题分类汇编专题26:矩形菱形与正方形(含答案)资料
-1-一、图形的相似与位似选择题1、(2016齐河三模)如图,A,B两地被池塘隔开,小明通过下列方法测出了A、B间的距离:先在AB外选一点C,然后测出AC,BC的中点M,N,并测量出MN的长为12m,由此他就知道了A、B间的距离.有关他这次探究活动的描述错误的是()A.AB=24mB.MN∥ABC.△CMN∽△CABD.CM:MA=1:2答案:D2、(2016齐河三模)如图,在方格纸中,△ABC和△EPD的顶点均在格点上,要使△ABC∽△EPD,则点P所在的格点为()A.P1B.P2C.P3D.P4答案:B3、(2016泰安一模)小刚身高1.7m,测得他站立在阳光下的影子长为0.85m,紧接着他把手臂竖直举起,测得影子长为1.1m,那么小刚举起的手臂超出头顶()A.0.5mB.0.55mC.0.6mD.2.2m【考点】相似三角形的应用;比例的性质.【专题】应用题.-2-【分析】在同一时刻,物体的实际高度和影长成比例,据此列方程即可解答.【解答】解:设小刚举起的手臂超出头顶是xm根据同一时刻物高与影长成比例,得,x=0.5.故选:A.4.(2016·浙江金华东区·4月诊断检测下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是()答案:B5、(2016齐河三模)如图,A,B两地被池塘隔开,小明通过下列方法测出了A、B间的距离:先在AB外选一点C,然后测出AC,BC的中点M,N,并测量出MN的长为12m,由此他就知道了A、B间的距离.有关他这次探究活动的描述错误的是()A.AB=24mB.MN∥ABC.△CMN∽△CABD.CM:MA=1:2答案:D6、(2016齐河三模)如图,在方格纸中,△ABC和△EPD的顶点均在格点上,要使△ABC∽△EPD,则点P所在的格点为()A.P1B.P2C.P3D.P4答案:B7、(2016泰安一模)小刚身高1.7m,测得他站立在阳光下的影子长为0.85m,紧接着他把手臂竖直举起,测得影子长为1.1m,那么小刚举起的手臂超出头顶()A.0.5mB.0.55mC.0.6mD.2.2m【考点】相似三角形的应用;比例的性质.A.B.C.D.ACB-3-【专题】应用题.【分析】在同一时刻,物体的实际高度和影长成比例,据此列方程即可解答.【解答】解:设小刚举起的手臂超出头顶是xm根据同一时刻物高与影长成比例,得,x=0.5.故选:A.8.(2016·天津北辰区·一摸)如图,在△ABC中,点D,E分别在AB,AC边上,DE∥BC,19ADEABCSS,BC=3.6,则DE等于()(A)0.4(B)0.9(C)1.2(D)答案:C9.(2016·天津市南开区·一模)如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO=CD,若B(1,0),则点C的坐标为()A.(1,﹣2)B.(﹣2,1)C.()D.(1,﹣1)【考点】位似变换;坐标与图形性质.【分析】首先利用等腰直角三角形的性质得出A点坐标,再利用位似是特殊的相似,若两个图形△ABC和△A′B′C′以原点为位似中心,相似比是k,△ABC上一点的坐标是(x,y),则在△A′B′C′中,它的对应点的坐标是(kx,ky)或(﹣kx,ky),进而求出即可.【解答】解:∵∠OAB=∠OCD=90°,AO=AB,CO=CD,等腰Rt△OAB与等腰Rt△OCD是位似图形,点B的坐标为(1,0),∴BO=1,则AO=AB=,∴A(,﹣),∵等腰Rt△OAB与等腰Rt△OCD是位似图形,O为位似中心,相似比为1:2,∴点C的坐标为:(1,﹣1).故选:D.第(6)题DCABE-4-【点评】此题主要考查了位似变换的性质,正确理解位似与相似的关系,记忆关于原点位似的两个图形对应点坐标之间的关系是解题的关键.10.(2016·天津市南开区·一模)将一副三角尺(在Rt△ABC中,∠ACB=90°,∠B=60°,在Rt△EDF中,∠EDF=90°,∠E=45°)如图摆放,点D为AB的中点,DE交AC于点P,DF经过点C,将△EDF绕点D顺时针方向旋转α(0°<α<60°),DE′交AC于点M,DF′交BC于点N,则的值为()A.B.C.D.【考点】旋转的性质.【专题】压轴题.【分析】先根据直角三角形斜边上的中线性质得CD=AD=DB,则∠ACD=∠A=30°,∠BCD=∠B=60°,由于∠EDF=90°,可利用互余得∠CPD=60°,再根据旋转的性质得∠PDM=∠CDN=α,于是可判断△PDM∽△CDN,得到=,然后在Rt△PCD中利用正切的定义得到tan∠PCD=tan30°=,于是可得=.【解答】解:∵点D为斜边AB的中点,∴CD=AD=DB,∴∠ACD=∠A=30°,∠BCD=∠B=60°,∵∠EDF=90°,∴∠CPD=60°,∴∠MPD=∠NCD,∵△EDF绕点D顺时针方向旋转α(0°<α<60°),∴∠PDM=∠CDN=α,∴△PDM∽△CDN,∴=,-5-在Rt△PCD中,∵tan∠PCD=tan30°=,∴=tan30°=.故选C.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了相似三角形的判定与性质.11.(2016·重庆巴南·一模)如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC.若=,AD=9,则AB等于()A.10B.11C.12D.16【分析】根据平行线分线段成比例定理得到=,代入计算即可得到答案.【解答】解:∵DE∥BC,∴==,又AD=9,∴AB=12,故选:C.12.(2016·山西大同·一模)如图所示,已知E(-4,2)和F(-1,1),以原点O为位似中心,按比例尺2:1把△EFO缩小,则点E的对应点E′的坐标为()A.(2,1)B.(12,12)C.(2,-1)D.(2,1-2)答案:C13.(2016·上海普陀区·一模)如图,BD、CE相交于点A,下列条件中,能推得DE∥BC的条件是()A.AE:EC=AD:DBB.AD:AB=DE:BCC.AD:DE=AB:BCD.BD:AB=AC:EC第12题图-6-【考点】平行线分线段成比例.【分析】根据比例式看看能不能推出△ABC∽△ADE即可.【解答】解:A、∵AE:EC=AD:DB,∴=,∴都减去1得:=,∵∠BAC=∠EAD,∴△ABC∽△ADE,∴∠D=∠B,∴DE∥BC,故本选项正确;B、根据AD:AB=DE:BC不能推出△ABC∽△ADE,即不能得出内错角相等,不能推出DE∥BC,故本选项错误;C、根据AD:DE=AB:BC不能推出△ABC∽△ADE,即不能得出内错角相等,不能推出DE∥BC,故本选项错误;D、根据BD:AB=AC:EC不能推出△ABC∽△ADE,即不能得出内错角相等,不能推出DE∥BC,故本选项错误;故选A.【点评】本题考查了平行线分线段成比例定理的应用,能理解平行线分线段成比例定理的内容是解此题的关键.14.(2016·山东枣庄·模拟)如图,在△ABC中,点D、E分别在边AB、AC上,下列条件中不能判断△ABC∽△AED的是()A.∠AED=∠BB.∠ADE=∠CC.=D.=【考点】相似三角形的判定.【分析】由于两三角形有公共角,则根据有两组角对应相等的两个三角形相似可对A、B选项进行判断;根据两组对应边的比相等且夹角对应相等的两个三角形相似可对C、D选项进行判断.-7-【解答】解:∵∠DAE=∠CAB,∴当∠AED=∠B或∠ADE=∠C时,△ABC∽△AED;当=时,△ABC∽△AED.故选D.【点评】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.15.(2016·上海普陀区·一模)如图,在△ABC中,D是AB的中点,DE∥BC,若△ADE的面积为3,则△ABC的面积为()A.3B.6C.9D.12【考点】相似三角形的判定与性质;三角形中位线定理.【分析】由平行可知△ADE∽△ABC,且=,再利用三角形的面积比等于相似比的平方可求得△ABC的面积.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵D是AB的中点,∴=,∴=()2=,且S△ADE=3,∴=,∴S△ABC=12,故选D.【点评】本题主要考查相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.16.(2016·陕西师大附中·模拟)如图,在△ABC中,DE∥BC,AD=6,BD=3,-8-AE=4,则EC的长为()A.1B.2C.3D.4【答案】B17.(2016·上海浦东·模拟)如图,△ABC和△AMN都是等边三角形,点M是△ABC的重心,那么AMNABCSS的值为(B)(A)23;(B)13;(C)14;(D)49.18.(2016·河北石家庄·一模)按如图所示的方法折纸,下面结论正确的个数()①∠2=90°;②∠1=∠AEC;③△ABE∽△ECF;④∠BAE=∠3.A.1个B.2个C.3个D.4个【考点】翻折变换(折叠问题);相似三角形的判定与性质.【分析】根据翻折变换的性质、相似三角形的判定定理解答即可.【解答】解:由翻折变换的性质可知,∠AEB+∠FEC=×180°=90°,则∠AEF=90°,即∠2=90°,①正确;由图形可知,∠1<∠AEC,②错误;∵∠2=90°,∴∠1+∠3=90°,又∠1+∠BAE=90°,∴∠BAE=∠3,④正确;∵∠BAE=∠3,∠B=∠C=90°,∴△ABE∽△ECF,③正确.故选:C.【点评】本题考查的是翻折变换的性质,翻折变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.19.(2016·河大附中·一模)如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,ABCMN第17题图-9-分别以点A.D为圆心,以大于21AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若BE=8,ED=4,CD=3,则BD的长是()A.4B.6C.8D.12答案:B20.(2016·湖北襄阳·一模)如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60°.若动点P以2cm/s的速度从B点出发沿着B→A的方向运动,点Q从A点出发沿着A→C的方向运动,当点P到达点A时,点Q也随之停止运动.设运动时间为t(s),当△APQ是直角三角形时,t的值为()A.34B.33C.34或33D.34或33或3答案:C21.(2016·广东河源·一模)如图,已知D,E分别是△ABC的AB,AC边上的点,,DEBC且:ADES△S四边形DBCE=1∶8,那么:AEAC等于()A.1∶9B.1∶3C.1∶8D.1∶2答案:B-10-22.(2016·广东深圳·联考)如图,在同一时刻,身高1.6米的小丽在阳光下的影长为2.5米,一棵大树的影长为5米,则这棵树的高度为A.7.8米B.3.2米C.2.3米D.1.5米答案:B23.(2016·河南三门峡·一模)如图,在△ABC中,∠C=90°,BC=3,D,E分别在AB、AC上,将△ADE沿DE翻折后,点A正好落在点A′处,若A′为CE的中点,则折痕DE的长为()A.21B.3C.2D.1答案:D二、填空题1.(2016·浙江杭州萧山区·模拟)如图,已知Rt△AOB中,∠AOB=90°,AO=5,BO=3,点E、M是线段AB上的两个不同的动点(不与端点重合),分别过E、M作AO的垂线,垂足分别为K、L.①△OEK面积S的最大值为;②若以OE、OM为边构造平行四边形EOMF,当EM⊥OF时,OK+OL=.【考点】相似三角形的判定与性质;平行四边形的性质.【分析】①根据条件证明△OBA∽△KEA,得到比例式,用含OK的式子表示KE,根据三角形的面积公式,列出关于OK的关系式即可;②根据菱形的性质和勾股定理,利用一元二次方程根与系数的关系,求出答案
本文标题:2016年中考数学模拟试题分类汇编专题26:矩形菱形与正方形(含答案)资料
链接地址:https://www.777doc.com/doc-3464653 .html