您好,欢迎访问三七文档
APIVOTALMETHODFORAFFINEVARIATIONALINEQUALITIESMENGLINCAOANDMICHAELC.FERRISAbstract.Weexplainandjustifyapath-followingalgorithmforsolvingtheequationsAC(x)=a,whereAisalineartransformationfromIRntoIRn,CisapolyhedralconvexsubsetofIRn,andACistheassociatednormalmap.WhenACiscoherentlyoriented,weareabletoprovethatthepathfollowingmethodterminatesattheuniquesolutionofAC(x)=a,whichisageneralizationofthewellknownfactthatLemke’smethodterminatesattheuniquesolutionLCP(q;M)whenMisaP{matrix.Otherwise,weidentifytwoclassesofmatriceswhichareanaloguesoftheclassofcopositive{plusandL{matricesinthestudyofthelinearcomplementarityproblem.WethenprovethatouralgorithmprocessesAC(x)=awhenAisthelineartransformationassociatedwithsuchmatrices.Thatis,whenappliedtosuchaproblem,thealgorithmwill ndasolutionunlesstheproblemisinfeasibleinawellspeci edsense.1.IntroductionInthispaperweareconcernedwiththeA neVariationalInequalityproblem.Theprob-lemcanbedescribedasfollows.LetCbeapolyhedralsetandletAbealineartransfor-mationfromIRntoIRn.Wewishto ndz2CsuchthathA(z) a;y zi 0;8y2C:(AVI)Thisproblemhasappearedintheliteratureinseveraldisguises.The rstisthelineargeneralizedequation,thatis02A(z) a+@C(z);(GE)whereC( )istheindicatorfunctionofthesetCde nedbyC(z):=8:0ifz2C;1ifz=2CItcanbeeasilyshownthat@C(z)=NC(z),thenormalconetoCatz,ifz2Candisemptyotherwise,andhence(AVI)isequivalentto(GE).ThesolutionsofsuchproblemsariseforexampleinthedeterminationofaNewton{typemethodforgeneralizedequations.Theproblemhasalsobeentermedthelinearstationaryproblemandwereferthereadertotheworkof[13]forseveralmethodsforthesolutionofthisproblemeitheroveraboundedpolyhedronorapointedconvexpolyhedron.Keywordsandphrases.A nevariationalinequality,normalmap,path{following.ThismaterialisbasedonresearchsupportedbytheNationalScienceFoundationGrantCCR{9157632andtheAirForceO ceofScienti cResearchGrantAFOSR{89{041012MENGLINCAOANDMICHAELC.FERRISInthisworkwewillusethenotionofanormalmapduetoRobinson[11].Thenormalmap,relatingtoafunctionF:IRn!IRnandanon{empty,closed,convexsetC,isde nedasFC(x):=F( C(x))+x C(x)where C(x)istheprojection(withrespecttotheEuclideannorm)ofxontothesetC.Throughoutthispaper,wewillbeconcernedwithsolvinga nenormalmaps,thatis,F Aisalinearmap,Cisapolyhedralsetandthesolutionxsatis esAC(x)=a(NE)Notethat(NE)isequivalentto(AVI),sinceifAC(x)=a,thenz:= C(x)isasolutionof(AVI).Furthermore,ifzisasolutionof(AVI),thenx:=z+a A(z)satis esAC(x)=a.Weshallusethisequivalencethroughoutthispaperwithoutfurtherreference.Averyfamiliarspecialcaseof(GE)iswhenC Kisapolyhedralconvexcone.Thenitiseasytoshowthat(GE)isequivalenttothegeneralizedcomplementarityproblem[7]z2K;A(z) a2KD;hA(z) a;zi=0whereKD:=fz jhz ;ki 0;8k2KgisthedualconeassociatedwithK.ThepivotaltechniquethatwedescribeherecanbethoughtofasageneralizationofthecomplementarypivotalgorithmduetoLemke[8].Inx2wedescribethetheoreticalalgorithmandapplyseveralresultsofEavesandRobinsontoestablishits niteterminationforcoherentlyorientednormalmaps.Inx3wecarefullydescribeanimplementationofsuchamethod,undertheassumptionthatCisgivenbyC:=fzjBz b;Hz=hg:Inx4weextendseveralwellknownresultsforlinearcomplementarityproblemstothea nevariationalinequality.Inparticular,wegeneralizethenotionsofcopositive,copositive{plusandL{matricesfromthecomplementarityliteratureandprovethatouralgorithmprocessesvariationalinequalitiesassociatedwithsuchmatrices.Thatis,whenthealgorithmisappliedtosuchaproblem,eitherasolutionisfound,ortheproblemisinfeasibleinawellspeci edsense.Awordaboutournotation.ForanyvectorsxandyinIRn,hx;yiorxTydenotestheinnerproductofxandy,andinthispaper,thesetwonotationsarefreelyinterchangeable.Eachm nmatrixArepresentsalinearmapfromIRntoIRm,thesymbolAreferstoeitherthematrixorthelinearmapasdeterminedbythecontext.GivenalinearmapAfromIRntoIRm,foranyX IRn,thesetA(X):=fy2IRmjy=Ax;forsomex2XgiscalledtheimageofXunderA;foranysetY IRm,thesetA 1(Y):=fx2IRnjAx2YgisreferredtoastheinverseimageofYunderA.Inparticular,thesetkerA:=A 1(f0g)iscalledthekernelofAandthesetimA:=A(IRn)iscalledtheimageofA.Givenanonempty,closed,convexsetCinIRn,recC:=fd2IRnjx+ d2C;8x2C;8 0giscalledtherecessionconeofCandlinC=recCT recCisthelinealityofC.IfFisafunctionfromIRntoIRn,thenFCrepresentsthenormalmapde nedabove.IfCisapolyhedralconvexset,asubsetGiscalledafaceofCifthereexistsavectorc2IRnsuchthatG=argmaxx2CcTx.APIVOTALMETHODFORAFFINEVARIATIONALINEQUALITIES32.TheoreticalAlgorithmWedescribebrie yatheoreticalalgorithmthatisguaranteedto ndasolutionin nitelymanystepswhenthehomeomorphismconditiondevelopedin[11]holds.Thismethodisarealizationofthegeneralpath{followingalgorithmdescribedandjusti edin[3].Inwhatfollowsweusevarioustermsandconceptsthatareexplainedin[3].Relatedmethodsfor ndingstationarypointsofa nefunctionsonpolyhedralsetsaregivenin[4,5].Amoredetaileddescriptionofanimplementationofthemethodisgiveninthex3;herewedealwiththeoreticalconsiderationsunderpinningthemethod.Otherrelatedworkcanbefoundin[1].Inordertoformulatethealgorithm,itisimportanttounderstandtheunderlyinggeometricstructureoftheproblem.Ourapproachreliesh
三七文档所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
本文标题:A pivotal method for affine variational inequaliti
链接地址:https://www.777doc.com/doc-3330732 .html