您好,欢迎访问三七文档
LED测试标准半导体发光二极管(LED)是新型的发光体,电光效率高、体积小、寿命长、电压低、节能和环保,是下一代理想的照明器件。LED光电测试是检验LED光电性能的重要而且唯一的手段,相应的测试结果是评价和反映当前我国LED产业发展水平的依据。制定LED光电测试方法的标准是统一衡量LED产品光电性能的重要途径,是使测试结果真实反映我国LED产业发展水平的前提。本文结合最新的LED测试方法的国家标准,介绍了LED的光电性能测试的几个主要方面。关键词:半导体发光二极管测试方法国家标准一、引言半导体发光二极管(LED)已经被广泛应用于指示灯、信号灯、仪表显示、手机背光源、车载光源等场合,尤其是白光LED技术的发展,LED在照明领域的应用也越来越广泛。但是过去对于LED的测试没有较全面的国家标准和行业标准,在生产实践中只能以相对参数为依据,不同的厂家、用户、研究机构对此争议很大,导致国内LED产业的发展受到严重影响。因此,半导体发光二极管测试方法国家标准应运而生。二、LED测试方法基于LED各个应用领域的实际需求,LED的测试需要包含多方面的内容,包括:电特性、光特性、开关特性、颜色特性、热学特性、可靠性等。1、电特性LED是一个由半导体无机材料构成的单极性PN结二极管,它是半导体PN结二极管中的一种,其电压-电流之间的关系称为伏安特性。由图1可知,LED电特性参数包括正向电流、正向电压、反向电流和反向电压,LED必须在合适的电流电压驱动下才能正常工作。通过LED电特性的测试可以获得LED的最大允许正向电压、正向电流及反向电压、电流,此外也可以测定LED的最佳工作电功率。LED电特性的测试一般利用相应的恒流恒压源供电下利用电压电流表进行测试。2、光特性类似于其它光源,LED光特性的测试主要包括光通量和发光效率、辐射通量和辐射效率、光强和光强分布特性和光谱参数等。(1)光通量和光效有两种方法可以用于光通量的测试,积分球法和变角光度计法。变角光度计法是测试光通量的最精确的方法,但是由于其耗时较长,所以一般采用积分球法测试光通量。如图2所示,现有的积分球法测LED光通量中有两种测试结构,一种是将被测LED放置在球心,另外一种是放在球壁。h:^E8(d图2积分球法测LED光通量此外,由于积分球法测试光通量时光源对光的自吸收会对测试结果造成影响,因此,往往引入辅助灯,如图3所示。图3辅助灯法消除自吸收影响在测得光通量之后,配合电参数测试仪可以测得LED的发光效率。而辐射通量和辐射效率的测试方法类似于光通量和发光效率的测试。(2)光强和光强分布特性图4LED光强测试中的问题如图4所示,点光源光强在空间各方向均匀分布,在不同距离处用不同接收孔径的探测器接收得到的测试结果都不会改变,但是LED由于其光强分布的不一致使得测试结果随测试距离和探测器孔径变化。因此,CIE-127提出了两种推荐测试条件使得各个LED在同一条件下进行光强测试与评价,目前CIE-127条件已经被各LED制造商和检测机构引用。图5CIE-127推荐LED光强测试条件(3)光谱参数LED的光谱特性参数主要包括峰值发射波长、光谱辐射带宽和光谱功率分布等。单色LED的光谱为单一波峰,特性以峰值波长和带宽表示,而白光LED的光谱由多种单色光谱合成。所有LED的光谱特性都可由光谱功率分布表示,而由LED的光谱功率分布还可计算得到色度参数。光谱功率分布的测试需要通过分光进行,将各色光从混合的光中区分出来进行测定,一般可以采用棱镜和光栅实现分光。3、开关特性LED开关特性是指LED通电和断电瞬间的光、电、色变化特性。通过LED开关特性的测试可以获得LED在通断电瞬间工作状态、物质属性等的变化规律,由此不仅可了解通断电对LED的损耗,也可用以指导LED驱动模块的设计等。4、颜色特性LED的颜色特性主要包括色品坐标、主波长、色纯度、色温及显色性等,LED的颜色特性对白光LED尤为重要。现有的颜色特性测试方法有分光光度法和积分法。如图7所示:分光光度法是通过单色仪分光测得LED光谱功率分布,之后利用色度加权函数积分获得对应色度参数;积分法是利用特定滤色片配合光电探测器直接测得色度参数;分光光度法的准确性要大大高于积分法。5、热学特性LED的热学特性主要指热阻和结温。热阻是指沿热流通道上的温度差与通道上耗散的功率之比。结温是指LED的PN结温度。LED的热阻和结温是影响LED光电性能的重要因素。现有的对LED结温的测试一般有两种方法:一种是采用红外测温显微镜或微型热偶测得LED芯片表面的温度并视其为LED的结温,但是准确度不够;另外一种是利用确定电流下的正向偏压与结温之间反比变化的关系来判定LED的结温。6、可靠性LED的可靠性包括静电敏感度特性、寿命、环境特性等。静电敏感度特性是指LED能承受的静电放电电压。某些LED由于电阻率较高,且正负电极距离很短,若两端的静电电荷累积到一定值时,这一静电电压会击穿PN结,严重时可将PN结击穿导致LED失效,因此必须对LED的静电敏感度特性进行测试,获得LED的静电放电故障临界电压。目前一般采用人体模式、机器模式、器件充电模式来模拟现实生活中的静电放电现象。为了观察LED在长期连续使用情况下光性能的变化规律,需要对LED进行抽样试验,通过长期观察和统计获得LED寿命参数。对于LED环境特性的试验往往采用模拟LED在应用中遇到的各类自然侵袭,一般有:高低温冲击试验、湿度循环试验、潮湿试验、盐雾试验、沙尘试验、辐照试验、振动和冲击试验、跌落试验、离心加速度试验等。三、国家标准的制定总结以上测试方法,半导体发光二极管测试方法国家标准对LED电特性、光学特性、热学特性、静电特性及寿命测试都作了相应的规定。对于电特性测试,标准分别规定了LED正向电压、反向电压、反向电流的测试框图;对于光通量测试,标准规定采用2π立体角测试结构;对于光强测试,标准引用了CIE-127的推荐条件;此外,对光谱测试、热学特性测试、静电放电敏感度测试、寿命测试等都作了明确的规定。四、结论国家标准的制定总结了现有LED的测试方法,将其中的科学适用的方法升级为标准测试方法,很好地消除了各界在LED测试领域存在的分歧,也使测试结果更加真实地反映我国LED产业的整体水平。但是鉴于LED技术还在处于不断地发展之中,国家标准的制定并不是一劳永逸的,应当时刻将最新最合适的测试技术引入标准之中。一般来说,LED调光技术的运用不仅可以提高对比度,还可以减少耗电量。下面将对大电流LED调光原理进行对比分析。对比度一般都被定义为系统可产生出的最亮色彩(白色)与最暗色彩(黑色)的发光度比率。可以通过控制进入的正向电流来调节LED的亮度级别,即模拟调光。LED的色彩可以随着正向电流的变化而位移,因此对于一些可容忍色彩位移的低档照明系统而言,模拟调光不失为一个合适的选择。但是,对于基于LED的LCD显示屏等的高端应用来说,为获得想要的色彩一致性和各种亮度级别,就必须采用更复杂的调光技术。针对高端应用的LED驱动器一般都采用固定频率工作模式与PWM调光机制。在PWM调光中,LED正向电流以减少的占空比在0%至100%间转换,以进行亮度控制。然而,PWM调光信号的频率必须大于100Hz,以免出现闪烁或抖动。为尽量降低可听到噪声和辐射,高端照明系统的调光频率范围一般要求几万赫兹。可是,更高的调光频率将大幅缩小驱动的调光范围,反而降低系统的最大亮度。本文将探讨在固定频率、时间延迟磁滞控制和固定导通时间的降压式LED驱动器中,高频PWM调光技术的性能表现,并通过测试数据来衡量不同配置下的性能。LED调光范围在PWM调光中,LED正向电流以受控的占空比(DDim)进行开/关(ON/OFF),以达到想要的亮度级别。DDim的动态范围定义了PWM调光配置所能实现的最大亮度级别。如上所述,LED亮度与LED正向电流成比例,因此,在使用PWM调光配置时所得到的最高和最低LED电流平均值分别由式1和式2表示。ILED_Max=DDim_Max×ILED(1)ILED_Min=DDim_Min×ILED(2)其中,ILED为LED电流,ILED_Max为LED电流的平均最高值,ILED_Min为LED电流的平均最低值,DDim_Max为最大调光占空比,DDim_Min为最小调光占空比。因此,最高和最低LED明亮的比率,又被看作PWM调光范围,用式3表示。调光范围=DDim_Max/DDim_Min(3)式3表示PWM调光范围与最大、最小调光占空比之间的关系。对于给定的调光频率FDim,DDim_Max表示最大占空比,即LED电流在下一个调光周期开始前,从所需的正向电流降低至零的时间;DDim_Min表示最小占空比,即LED电流由零升至所需的正向电流(IF)的时间。从图1(a)可见,DDim_Max和DDim_Min用式5表示。DDim_Max=(T-tSD)/T(4)DDim_Min=(tD+tSU)/T(5)其中,T为调光周期(T=1/FDim),tD为从DIM脉冲上升沿到电源FET第一个脉冲之间的延迟,tSU为LED电流从零升至所需电流的上升时间,tSD为从DIM脉冲的下降沿到LED电流等于零之间的下降时间。图1(a):最大和最小的PWM调光占空比;图1(b):最常用的PWM调光配置。式4和式5表达了DDim_Max、DDim_Min与LED驱动器的传动(power-train)特性和PWM调光方案之间的关系。下文将讨论几种不同的PWM调光方案。PWM调光方案可以采用多个不同的电路来实现正向LED电流的开/关切换,图1(b)是最常用的PWM调光配置。在使能调光方案(图1b(A))中,LED电流的开/关是通过把开关稳压器或者电源FET驱动器设置成使能(Enable)或失效(Disable)来实现的。使能调光的缺点是调光延迟较大(tD,tSU&tSD)。tD指需要启动开关稳压器电路所需的时间。如果利用调光信号去开/关电源FET驱动器,而不是去开关稳压器,则可以消除这种延迟。tSU和tSD指电感器电流上升至所需LED电流,并将电流下降到零电流所需的时间,这种延迟很大程度视乎LED驱动器的传动特性。使能调光方案可以在低调光频率下提供较大的调光范围。但是,由于调光延迟比较大,如果增加调光频率,会明显降低调光范围。串行调光方案(图1b(B))将一个开关与LED串联在一起,这样,LED电流从IF和零之间的切换将随着串联开关的导通(ON)和断开(OFF)来执行。在这种配置中,当串行开关器导通时,峰值检测器被用来确保电压信号在反馈引脚(FB)处的连续性。串行调光没有延迟时间tD和tSD,因此要优于使能调光。不过,这种方法的tSU较大,在高调光频率下所能达至的调光范围比较小。并行调光方案(图1b(C))把一个分流开关与LED并联在一起。一旦将这个开关设置成OFF或ON,立刻会有电流IF流进或者流出LED。并行调光能明显减少tD、tSU和tSD,因为它可长期维持连续的电感器电流,这个电流的平均值大约等于所需的LED正向电流。因此,这种调光配置适合那些在高调光频率下要求宽调光范围的应用。但是,并行调光必须配合开关稳理器拓朴来使用,因为只有这种布局才可提供连续的输出电感器电流。此外,由于分流开关(shuntswitch)的功率耗散,这种方式将降低整体系统的效率。下文将探讨与固定频率、磁滞和固定导通时间降压式LED驱动器一起工作时,使能调光和并行调光方案的性能。固定频率降压LED驱动器的调光固定频率电流模式降压LED驱动器的简化框图如图2所示。驱动器可通过选用Enable_Dim控制或Shunt_Dim控制,配置成使能调光或并行调光。图3表示图2中的LED驱动器的典型使能调光波形,这些波形是用LM3045(1A的16MHz固定频率LED驱动器)来产生的。图2:固定频率的电流模式降压LED驱动器的简化框图。在图3中,从DIM脉冲的上升沿到电源FET第一个脉冲,大约有50μs的延迟tD。这个延迟正如前面所说与启动稳压器的电路有关。与LED电流由零到5A的上
本文标题:LED测试标准
链接地址:https://www.777doc.com/doc-3314497 .html