您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 专题23 圆的有关位置关系-2年中考1年模拟备战2017年中考数学精品系列(原卷版)
备战2017中考系列:数学2年中考1年模拟第四篇图形的性质☞解读考点知识点名师点晴点和圆的位置关系理解并掌握设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外d>r;点P在圆上d=r;点P在圆内d<r及其运用.直线和圆的位置关系[来源:学。科。网][来源:学&科&网Z&X&X&K]切线的判定定理理解切线的判定定理,会运用它解决一些具体的题目[来源:]切线的性质定理理解切线的性质定理,会运用它解决一些具体的题目切线长定理运用切线长定理解决一些实际问题.圆和圆的位置关系理解两圆的互解关系与d、r1、r2等量关系的等价条件并灵活应用它们解题.☞考点归纳归纳1:点和圆的位置关系基础知识归纳:设⊙O的半径是r,点P到圆心O的距离为d,则有:d<r点P在⊙O内;d=r点P在⊙O上;d>r点P在⊙O外.基本方法归纳:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.注意问题归纳:符号“⇔”读作“等价于”,它表示从符号“⇔”的左端可以得到右端,从右端也可以得到左端.【例1】(2016上海市)如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是()A.1<r<4B.2<r<4C.1<r<8D.2<r<8归纳2:直线与圆的位置关系基础知识归纳:直线和圆有三种位置关系,具体如下:(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,(3)相离:直线和圆没有公共点时,叫做直线和圆相离.如果⊙O的半径为r,圆心O到直线l的距离为d,那么:直线l与⊙O相交d<r;直线l与⊙O相切d=r;直线l与⊙O相离d>r;注意问题归纳:直线与圆的位置关系,解题的关键是了解直线与圆的位置关系与d与r的数量关系.【例2】(2016广西梧州市)已知半径为5的圆,其圆心到直线的距离是3,此时直线和圆的位置关系为()A.相离B.相切C.相交D.无法确定【例3】(2016内蒙古巴彦淖尔市)如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB,垂足为H,求证:CD=HF;(3)若CD=1,EH=3,求BF及AF长.归纳3:圆和圆的位置关系基础知识归纳:如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种.如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种.如果两个圆有两个公共点,那么就说这两个圆相交.基本方法归纳:设两圆的半径分别为R和r,圆心距为d,那么两圆外离d>R+r两圆外切d=R+r两圆相交R-r<d<R+r(R≥r)两圆内切d=R-r(R>r)两圆内含d<R-r(R>r)【例3】(2016四川省凉山州)已知,一元二次方程28150xx的两根分别是⊙O1和⊙O2的半径,当⊙O1和⊙O2相切时,O1O2的长度是()A.2B.8C.2或8D.2<O2O2<8☞2年中考【2016年题组】一、选择题1.(2016江苏省连云港市)如图,在网格中(每个小正方形的边长均为1个单位)选取9个格点(格线的交点称为格点).如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为()A.1722rB.2317rC.517rD.295r2.(2016吉林省长春市)如图,PA、PB是⊙O的切线,切点分别为A、B,若OA=2,∠P=60°,则AB的长为()A.23B.πC.43D.533.(2016山东省德州市)《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题“今有勾八步,股十五步,问勾中容圆径几何?”其意思是:“今有直角三角形,勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)直径是多少?”()A.3步B.5步C.6步D.8步4.(2016江苏省无锡市)如图,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠AOD的度数为()A.70°B.35°C.20°D.40°5.(2016河北省)如图为4×4的网格图,A,B,C,D,O均在格点上,点O是()A.△ACD的外心B.△ABC的外心C.△ACD的内心D.△ABC的内心6.(2016贵州省贵阳市)小颖同学在手工制作中,把一个边长为12cm的等边三角形纸片贴到一个圆形的纸片上,若三角形的三个顶点恰好都在这个圆上,则圆的半径为()A.23cmB.43cmC.63cmD.83cm7.(2016湖北省襄阳市)如图,I是△ABC的内心,AI的延长线和△ABC的外接圆相交于点D,连接BI、BD、DC.下列说法中错误的一项是()A.线段DB绕点D顺时针旋转一定能与线段DC重合B.线段DB绕点D顺时针旋转一定能与线段DI重合C.∠CAD绕点A顺时针旋转一定能与∠DAB重合D.线段ID绕点I顺时针旋转一定能与线段IB重合8.(2016湖南省湘西州)在RT△ABC中,∠C=90°,BC=3cm,AC=4cm,以点C为圆心,以2.5cm为半径画圆,则⊙C与直线AB的位置关系是()A.相交B.相切C.相离D.不能确定9.(2016福建省泉州市)如图,AB和⊙O相切于点B,∠AOB=60°,则∠A的大小为()A.15°B.30°C.45°D.60°10.(2016上海市)如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是()A.1<r<4B.2<r<4C.1<r<8D.2<r<8二、填空题11.(2016内蒙古包头市)如图,已知AB是⊙O的直径,点C在⊙O上,过点C的切线与AB的延长线交于点P,连接AC,若∠A=30°,PC=3,则BP的长为.12.(2016内蒙古呼和浩特市)在周长为26π的⊙O中,CD是⊙O的一条弦,AB是⊙O的切线,且AB∥CD,若AB和CD之间的距离为18,则弦CD的长为.13.(2016内蒙古赤峰市)如图,两同心圆的大圆半径长为5cm,小圆半径长为3cm,大圆的弦AB与小圆相切,切点为C,则弦AB的长是.14.(2016四川省成都市)如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=24,AH=18,⊙O的半径OC=13,则AB=.15.(2016四川省攀枝花市)如图,△ABC中,∠C=90°,AC=3,AB=5,D为BC边的中点,以AD上一点O为圆心的⊙O和AB、BC均相切,则⊙O的半径为.16.(2016广东省广州市)如图,以点O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,点P为切点,AB=123,OP=6,则劣弧AB的长为.17.(2016江苏省徐州市)如图,⊙O是△ABC的内切圆,若∠ABC=70°,∠ACB=40°,则∠BOC=°.18.(2016江苏省扬州市)如图,⊙O是△ABC的外接圆,直径AD=4,∠ABC=∠DAC,则AC长为.19.(2016湖北省咸宁市)如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,连接BD、BE、CE,若∠CBD=32°,则∠BEC的度数为.20.(2016湖南省益阳市)如图,四边形ABCD内接于⊙O,AB是直径,过C点的切线与AB的延长线交于P点,若∠P=40°,则∠D的度数为.21.(2016黑龙江省哈尔滨市)如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC、BE.若AE=6,OA=5,则线段DC的长为.22.(2016贵州省黔西南州)已知⊙O1和⊙O2的半径分别为m、n,且m、n满足21(2)0mn,圆心距O1O2=52,则两圆的位置关系为.三、解答题23.(2016四川省自贡市)如图,⊙O是△ABC的外接圆,AC为直径,弦BD=BA,BE⊥DC交DC的延长线于点E,求证:(1)∠1=∠BAD;(2)BE是⊙O的切线.24.(2016四川省资阳市)如图,在⊙O中,点C是直径AB延长线上一点,过点C作⊙O的切线,切点为D,连结BD.(1)求证:∠A=∠BDC;(2)若CM平分∠ACD,且分别交AD、BD于点M、N,当DM=1时,求MN的长.25.(2016四川省雅安市)如图1,AB是⊙O的直径,E是AB延长线上一点,EC切⊙O于点C,OP⊥AO交AC于点P,交EC的延长线于点D.(1)求证:△PCD是等腰三角形;(2)CG⊥AB于H点,交⊙O于G点,过B点作BF∥EC,交⊙O于点F,交CG于Q点,连接AF,如图2,若sinE=35,CQ=5,求AF的值.26.(2016山东省东营市)如图,在△ABC中,以BC为直径的圆交AC于点D,∠ABD=∠ACB.(1)求证:AB是圆的切线;(2)若点E是BC上一点,已知BE=4,tan∠AEB=53,AB:BC=2:3,求圆的直径.27.(2016山东省枣庄市)如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为22,求BC的长.28.(2016山西省)请阅读下列材料,并完成相应的任务:阿基米德折弦定理阿基米德(archimedes,公元前287﹣公元前212年,古希腊)是有史以来最伟大的数学家之一,他与牛顿、高斯并成为三大数学王子.阿拉伯Al﹣Binmi(973﹣1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al﹣Binmi译本出版了俄文版《阿基米德全集》,第一题就是阿基米德折弦定理.阿基米德折弦定理:如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BC>AB,M是ABC的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=AB+BD.下面是运用“截长法”证明CD=AB+BD的部分证明过程.证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG.∵M是ABC的中点,∴MA=MC.…任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图3,已知等边△ABC内接于⊙O,AB=2,D为AC上一点,∠ABD=45°,AE⊥BD于点E,则△BDC的周长是.29.(2016广西玉林市崇左市)如图,AB是⊙O的直径,点C、D在圆上,且四边形AOCD是平行四边形,过点D作⊙O的切线,分别交OA延长线与OC延长线于点E、F,连接BF.(1)求证:BF是⊙O的切线;(2)已知圆的半径为1,求EF的长.30.(2016广西南宁市)如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=10,CD=8,求BE的长.31.(2016天津市)在⊙O中,AB为直径,C为⊙O上一点.(1)如图1.过点C作⊙O的切线,与AB的延长线相交于点P,若∠CAB=27°,求∠P的大小;(2)如图2,D为AC上一点,且OD经过AC的中点E,连接DC并延长,与AB的延长线相交于点P,若∠CAB=10°,求∠P的大小.32.(2016四川省乐山市)如图,在△ABC中,AB=AC,以AC边为直径作⊙O交BC边于点D,过点D作DE⊥AB于点E,ED、AC的延长线交于点F.(1)求证:EF是⊙O的切线;(2)若EB=32,且sin∠CFD=35,求⊙O的半径与线段AE的长.33.(2016四川省广安市)如图,以△ABC的BC边上一点O为圆心,经过A,C两点且与BC边交于点E,点D为CE的下半圆弧的中点,连接AD交线段EO于点F,若AB=BF.(1)求证:AB是⊙O的切线;(2)若CF=4,DF=10,求⊙O的半径r及sinB.34.(201
本文标题:专题23 圆的有关位置关系-2年中考1年模拟备战2017年中考数学精品系列(原卷版)
链接地址:https://www.777doc.com/doc-3272751 .html