您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 2015年北京市各区中考数学一模23题汇总
第1页(共15页)2015年北京市各区中考数学一模23题汇总1.(2015•东城区一模)如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA,BC的平行线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若AC=2DE,求sin∠CDB的值.2.(2015•西城区一模)如图,四边形ABCD中,BD垂直平分AC,垂足为点F,E为四边形ABCD外一点,且∠ADE=∠BAD,AE⊥AC(1)求证:四边形ABDE是平行四边形;(2)如果DA平分∠BDE,AB=5,AD=6,求AC的长.3.(2015•海淀区一模)如图,在▱ABCD中,∠BAD的平分线交CD于点E,交BC的延长线于点F,连接BE,∠F=45°.(1)求证:四边形ABCD是矩形;(2)若AB=14,DE=8,求sin∠AEB的值.第2页(共15页)4.(2015•朝阳区一模)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=AC,连接CE、OE,连接AE交OD于点F.(1)求证:OE=CD;(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长.5.(2015•北京)在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.6.(2015•丰台区一模)如图,菱形ABCD中,分别延长DC,BC至点E,F,使CE=CD,CF=CB,联结DB,BE,EF,FD.(1)求证:四边形DBEF是矩形;(2)如果∠A=60°,菱形ABCD的面积为,求DF的长.第3页(共15页)7.(2015•顺义区一模)如图,平行四边形ABCD中,点E是AD边上一点,且CE⊥BD于点F,将△DEC沿从D到A的方向平移,使点D与点A重合,点E平移后的点记为G.(1)画出△DEC平移后的三角形;(2)若BC=,BD=6,CE=3,求AG的长.8.(2015•通州区一模)已知菱形ABCD的对角线AC与BD相交于点E,点F在BC的延长线上,且CF=BC,连接DF,点G是DF中点,连接CG.求证:四边形ECGD是矩形.9.(2015•怀柔区一模)如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,BE=AF.(1)求证:四边形ADEF是平行四边形;(2)若∠ABC=60°,BD=4,求平行四边形ADEF的面积.第4页(共15页)10.(2015•平谷区一模)如图,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,EF∥AC.(1)求证:BE=AF;(2)若∠ABC=60°,BD=12,求DE的长及四边形ADEF的面积.11.(2015•房山区一模)如图,在菱形ABCD中,对角线AC、BD相交于点O,过点O作一条直线分别交DA、BC的延长线于点E、F,连接BE、DF.(1)求证:四边形BFDE是平行四边形;(2)若AB=4,CF=1,∠ABC=60°,求sin∠DEO的值.12.(2015•大兴区一模)已知:如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B.(1)请你判断BC′与AB′的位置关系,并说明理由;(2)求BC′的长.第5页(共15页)13.(2015•门头沟区一模)如图,菱形ABCD的对角线AC和BD交于点O,分别过点C、D作CE∥BD,DE∥AC,CE和DE交于点E.(1)求证:四边形ODEC是矩形;(2)当∠ADB=60°,AD=2时,求tan∠EAD的值.第6页(共15页)2015年北京市各区中考数学一模23题汇总参考答案与试题解析一.解答题(共13小题)1.(2015•东城区一模)如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA,BC的平行线交于点E,且DE交AC于点O,连接AE.(1)求证:四边形ADCE是菱形;(2)若AC=2DE,求sin∠CDB的值.【考点】菱形的判定与性质;勾股定理.菁优网版权所有【分析】(1)由DE∥BC,CE∥AB,可证得四边形DBCE是平行四边形,又由△ABC中,∠BCA=90°,CD是边AB上的中线,根据直角三角形斜边的中线等于斜边的一半,可得CD=AD=BD=CE,然后由CE∥AB,证得四边形ADCE平行四边形的性质,继而证得四边形ADCE是菱形;(2)首先过点作CF⊥AB于点F,由(1)可知,BC=DE,设BC=x,则AC=2x,然后由勾股定理求得AB,再由三角形的面积,求得CF的长,由勾股定理即可求得CD的长,继而求得答案.【解答】(1)证明:∵DE∥BC,CE∥AB,∴四边形DBCE是平行四边形.∴CE=BD,又∵CD是边AB上的中线,∴BD=AD,∴CE=DA,又∵CE∥DA,∴四边形ADCE是平行四边形.∵∠BCA=90°,CD是斜边AB上的中线,∴AD=CD,∴四边形ADCE是菱形;(2)解:过点作CF⊥AB于点F,由(1)可知,BC=DE,设BC=x,则AC=2x,在Rt△ABC中,AB==x.∵AB•CF=AC•BC,∴CF==x.∵CD=AB=x,∴sin∠CDB==.【点评】此题考查了菱形的判定与性质、平行四边形的判定与性质以及勾股定理.注意准确作出辅助线是解此题的关键.2.(2015•西城区一模)如图,四边形ABCD中,BD垂直平分AC,垂足为点F,E为四边形ABCD外一点,且∠ADE=∠BAD,AE⊥AC(1)求证:四边形ABDE是平行四边形;(2)如果DA平分∠BDE,AB=5,AD=6,求AC的长.第7页(共15页)【考点】菱形的判定与性质;勾股定理;平行四边形的判定.菁优网版权所有【分析】(1)由平行四边形的判定定理:两组对边分别平行得到结论;(2)由角平分线、等量代换得到角相等,由等角对等边得到BD=AB=5,根据勾股定理列方程求解.【解答】(1)证明:∵∠ADE=∠BAD,∴AB∥DE,∵AE⊥AC,BD⊥AC,AE∥BD,∴四边形ABDE是平行四边形;(2)解:∵DA平分∠BDE,∴∠AED=∠BDA,∴∠BAD=∠BDA,∴BD=AB=5,设BF=x,则DF=5﹣x,∴AD2﹣DF2=AB2﹣BF2,∴62﹣(5﹣x)2=52﹣x2,∴x=,∴AF==,∴AC=2AF=.【点评】本题考查了平行四边形的判定和性质,角平分线的性质,勾股定理的应用,解题的关键是利用勾股定理列方程.3.(2015•海淀区一模)如图,在▱ABCD中,∠BAD的平分线交CD于点E,交BC的延长线于点F,连接BE,∠F=45°.(1)求证:四边形ABCD是矩形;(2)若AB=14,DE=8,求sin∠AEB的值.【考点】矩形的判定与性质;勾股定理;平行四边形的性质.菁优网版权所有【分析】(1)欲证明四边形ABCD是矩形,只需推知∠DAB是直角;(2)如图,过点B作BH⊥AE于点H.构建直角△BEH.通过解该直角三角形可以求得sin∠AEB的值.在Rt△BCE中,由勾股定理得.在Rt△AHB中,BH=AB•sin45°=7.所以通过解Rt△BHE得到:sin∠AEB=.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAF=∠F.∵∠F=45°,∴∠DAE=45°.∵AF是∠BAD的平分线,∴∠EAB=∠DAE=45°.∴∠DAB=90°.又∵四边形ABCD是平行四边形,∴四边形ABCD是矩形.(2)解:如图,过点B作BH⊥AE于点H.∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠DCB=∠D=90°.第8页(共15页)∵AB=14,DE=8,∴CE=6.在Rt△ADE中,∠DAE=45°,∴∠DEA=∠DAE=45°.∴AD=DE=8.∴BC=8.在Rt△BCE中,由勾股定理得.在Rt△AHB中,∠HAB=45°,∴BH=AB•sin45°=7.∵在Rt△BHE中,∠BHE=90°,∴sin∠AEB=.【点评】本题考查了勾股定理,矩形的判定与性质和平行四边形的判定与性质.注意:本题中辅助线的作法,通过构建直角三角形,通过勾股定理求得有关线段的长度,然后通过解直角三角形来求锐角三角函数值.4.(2015•朝阳区一模)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且DE=AC,连接CE、OE,连接AE交OD于点F.(1)求证:OE=CD;(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长.【考点】菱形的性质;勾股定理.菁优网版权所有【分析】(1)先求出四边形OCED是平行四边形,再根据菱形的对角线互相垂直求出∠COD=90°,证明OCED是矩形,可得OE=CD即可;(2)根据菱形的性质得出AC=AB,再根据勾股定理得出AE的长度即可.【解答】(1)证明:在菱形ABCD中,OC=AC.∴DE=OC.∵DE∥AC,∴四边形OCED是平行四边形.∵AC⊥BD,∴平行四边形OCED是矩形.∴OE=CD.(2)在菱形ABCD中,∠ABC=60°,∴AC=AB=2.∴在矩形OCED中,CE=OD=.在Rt△ACE中,AE=.【点评】本题考查了菱形的性质,矩形的判定与性质,勾股定理的应用,是基础题,熟记矩形的判定方法与菱形的性质是解题的关键.第9页(共15页)5.(2015•北京)在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.【考点】平行四边形的性质;角平分线的性质;勾股定理的逆定理;矩形的判定.菁优网版权所有【专题】证明题.【分析】(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,可得答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)解:∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC===5,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.【点评】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DFA是解题关键.6.(2015•丰台区一模)如图,菱形ABCD中,分别延长DC,BC至点E,F,使CE=CD,CF=CB,联结DB,BE,EF,FD.(1)求证:四边形DBEF是矩形;(2)如果∠A=60°,菱形ABCD的面积为,求DF的长.【考点】菱形的性质;矩形的判定.菁优网版权所有【分析】(1)根据菱形的性质得出CE=CD,CF=CB,再根据矩形的判定证明即可.(2)根据菱形的面积等于对角线乘积的一半,得出DB的长度,再根据含30°直角三角形的性质解答即可.【解答】(1)证明:∵CE=CD,CF=CB,∴四边形DBEF是平行四边形.∵四边形ABCD是菱形,∴CD=CB.∴CE=CF,∴BF=DE,∴四边形DBEF是矩形.第10页(共15页)(2)设DB为2a,∵∠A=60°,菱形ABCD的面积为,∴可得,解得:a=2,∴DB=4,∵∠DBC=60°,∴DF=.【点评】此题考查菱形的性质,关键是根据菱形的性质和矩形的判定解答,同时根据菱形的面积和直角三角形的性质分析.7.(2015•顺义区一模)如图,平行四边形ABCD中,点E是AD边上一点,且CE⊥BD于点F,将△DEC沿从D到A的方向平移,使点D与点A重合,点E平移后的点记为G.(1)画出△DEC平移后的三角形;(2)若BC=,BD=6,CE=3,求AG的长.【考点
本文标题:2015年北京市各区中考数学一模23题汇总
链接地址:https://www.777doc.com/doc-3250320 .html