您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 数学实验――插值与数值积分
数学实验报告实验3插值与数值积分1实验3插值与数值积分分1黄浩2011011743一、实验目的1)掌握用matlab计算Lagrange、分段线性、分段三次和三次样条插值这四种插值方法,并通过改变节点的数目,分析插值结果2)掌握用matlab及梯形公式、辛普森公式计算数值积分3)通过实例学习用插值和数值积分解决实际问题二、实验内容1.(1)题:问题叙述:考虑函数:(),取不同的节点数目,分别用Lagrange插值、分段线性和三次插值,以及三次样条插值近似f(x),分析插值效果方案实施:由于在matlab中,没有预设的lagrange插值法函数,因此我首先编制了Lagrange(程序见四.1)和分段线性的插值函数(程序见四.2),并进行了函数的插值检验(程序见四.3),以检验编写的函数是否准确,如下图所示:数学实验报告实验3插值与数值积分2上图中,红、绿两线分别是自设Lagrange和分段线性的插值图,蓝色十字点是matlab自带的分段线性函数的插值图,蓝绿完全吻合、红绿基本吻合,证明自设函数是正确的。然后进行本题目要求的插值操作:以(x0,y0)为节点,节点在区间内均匀分布且将节点数分别调为6、11、21;x为插值点,绘图时使用101个插值点(始终大于节点数),制表时使用的插值点数目依节点数调节;y为真值,y1、y2、y3、y4分别为使用Lagrange、分段线性、分段三次和三次样条插值的方法所得的插值结果。1)节点数为6时:(即节点为-5,-3,…,3,5)xyy1y2y3y401.00000.56730.50000.50000.56850.50000.80000.55010.50000.50000.55131.00000.50000.50000.50000.50000.50001.50000.30770.42130.40000.44250.41672.00000.20000.32120.30000.31330.31312.50000.13790.20970.20000.17750.20293.00000.10000.10000.10000.10000.10003.50000.07550.00780.08460.07540.01834.00000.0588-0.04810.06920.0559-0.02854.50000.0471-0.04600.05380.0431-0.02635.00000.03850.03850.03850.03850.0385图像为:数学实验报告实验3插值与数值积分3由上图可见,当节点数为6时,插值效果皆不理想,在各节点之间的插值都有很大的误差,在x=0附近误差最大2)节点数为11时:(即节点为-5,-4,…,4,5)xyy1y2y3y401.00001.00001.00001.00001.00000.50000.80000.84340.75000.79690.82051.00000.50000.50000.50000.50000.50001.50000.30770.23530.35000.32190.29732.00000.20000.20000.20000.20000.20002.50000.13790.25380.15000.13850.14013.00000.10000.10000.10000.10000.10003.50000.0755-0.22620.07940.07550.07454.00000.05880.05880.05880.05880.05884.50000.04711.57870.04860.04650.04845.00000.03850.03850.03850.03850.0385图像为:由上图可见,当节点数为11时,分段三次与三次样条插值的效果较好,其次是分段线性插值,而Lagrange插值在[-2,2]区间内精度较高,但在|x|3时,就会发生Runge振荡数学实验报告实验3插值与数值积分43)节点数为21时(程序见四.4):(即节点为-5,-4.5…,4.5,5)xyy1y2y3y401.00001.00001.00001.00001.00000.10000.99010.99040.96000.98690.98910.20000.96150.96260.92000.95260.95940.30000.91740.91890.88000.90500.91520.40000.86210.86320.84000.85150.86060.50000.80000.80000.80000.80000.80000.60000.73530.73370.74000.74560.73720.70000.67110.66820.68000.68230.67420.80000.60980.60650.62000.61630.61270.90000.55250.55030.56000.55350.55411.00000.50000.50000.50000.50000.50001.10000.45250.45500.46150.45440.45171.20000.40980.41430.42310.41180.40891.30000.37170.37650.38460.37280.37111.40000.33780.34110.34620.33790.33751.50000.30770.30770.30770.30770.30771.60000.28090.27700.28620.28130.28101.70000.25710.25010.26460.25750.25721.80000.23580.22810.24310.23600.23591.90000.21690.21150.22150.21690.21702.00000.20000.20000.20000.20000.20002.10000.18480.19180.18760.18500.18482.20000.17120.18430.17520.17130.17122.30000.15900.17420.16280.15900.15892.40000.14790.15900.15030.14790.14792.50000.13790.13790.13790.13790.13792.60000.12890.11300.13030.12890.12892.70000.12060.08960.12280.12070.12062.80000.11310.07500.11520.11310.11312.90000.10630.07700.10760.10630.10633.00000.10000.10000.10000.10000.10003.10000.09430.14080.09510.09430.09423.20000.08900.18580.09020.08900.08903.30000.08410.21010.08530.08410.08413.40000.07960.18230.08040.07960.07963.50000.07550.07550.07550.07550.07553.60000.0716-0.11430.07210.07160.07163.70000.0681-0.34590.06880.06810.06813.80000.0648-0.51360.06550.06480.06483.90000.0617-0.44590.06220.06170.06174.00000.05880.05880.05880.05880.05884.10000.05611.13530.05650.05620.05614.20000.05362.67440.05410.05370.05364.30000.05134.06910.05180.05130.05134.40000.04913.94510.04940.04910.04914.50000.04710.04710.04710.04710.04714.60000.0451-10.33450.04530.04510.0451数学实验报告实验3插值与数值积分54.70000.0433-28.66260.04360.04330.04334.80000.0416-50.86440.04190.04150.04164.90000.0400-58.23810.04020.03990.04005.00000.03850.03850.03850.03850.0385图像为:由上图可知,当节点数为21时,分段三次和三次样条插值的精度都很高,分段线性稍次,然而Lagrange插值在x=0附近的区间内精度很好,在|x|3.5时,却发生了更为剧烈的Runge振荡(见上表蓝色粗字,在x=4.9时,插值竟达到了-58.2381)为定量比较各种算法的误差大小,在节点数为21的情况下,在不发生Runge振荡的[1.1,2.0]的区间内,对上表进行数据处理,结果如下:(其中y1’,y2’,y3’,y4’分别为使用Lagrange、分段线性、分段三次和三次样条插值的方法所得结果的相对误差的绝对值)xy1'y2'y3'y4'1.10000.00550.01430.01540.00591.20000.01100.02120.02670.00701.30000.01290.02150.03070.0046数学实验报告实验3插值与数值积分61.40000.00980.01500.02400.00121.50000.00000.00000.00000.00001.60000.01390.03320.01710.00111.70000.02720.05800.02680.00121.80000.03270.06580.02920.00041.90000.02490.04730.02080.00052.00000.00000.00000.00000.0000SUM0.13790.27620.19070.0218由上表看出,在无Runge振荡的情况下,使用不同插值方法,误差从大到小排列为:分段线性分段三次Lagrange三次样条插值。得出结论:由上述的比较,我们可以总结出以下几点结论:a)一般而言,节点数增加时,插值精度普遍提高b)在不发生Runge振荡时,分段三次、三次样条插值和Lagrange插值的精度近似,都有很好的插值效果,而分段线性插值次于上述三者,具体的误差大小为:分段线性分段三次Lagrange三次样条插值c)当节点数增加时,Lagrange插值法的Runge振荡会更加剧烈,在区间端点附近会发生更大的误差,但在区间内部插值效果较好综合上述三点,还可以对该四种插值方法做一个整体评价:a)Lagrange插值法:在节点数较少时,插值精度差,当节点数增加时,又有可能发生Runge振荡,造成更大的误差,这是它作为高次插值多项式的内在缺陷。因此,在我们无法评估节点数与所选区间是否合适,也无法判断插值的突跃是否为Runge振荡时,它的精度无法得到保证,可信性较低。b)分段线性插值法:其精度随着节点数的增加而单调地增加,但在同种情况下,其精度低于分段三次与三次样条插值。因此在计算机计算时,使用后二者更有利于保证精度,但是在广泛的工程领域中,分段线性因其计算的简便性,使得工程师可以通过查表进行插值,因而比后二者有着更广泛的应用。c)分段三次和三次样条插值:精度随着节点数的增加而单调地增加,且明显高于分段线性插值,从精度上来说是更优化的选择,但是计算量也较大。1.(2)题数学实验报告实验3插值与数值积分7问题叙述:对于上一问的函数(),选取非均匀插值节点:(),尝试进行插值,并分析插值效果方案实施:选节点数为20,即n=20,非均匀选取;插值点21个,公差为0.5,节点与插值点互不相同;采用与上一问相似的编程语言(程序见四.5),插值结果如下:xyy1y2y3y401.00000.96240.86660.866
本文标题:数学实验――插值与数值积分
链接地址:https://www.777doc.com/doc-3221296 .html