您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 数据通信与网络 > 低温制冷技术最新进展期末大作业
低温制冷技术最新进展作业姓名:李科学号:3115014002班级:硕5015院系:制冷与低温工程系1第一章低温制冷技术概述1.低温制冷技术所涉及的温度范围是那些?主要的工程应用价值何在?制冷是指用人工的方法在一定时间和一定空间内将物体冷却,使其温度降低到环境温度以下,保持并利用这个温度。按照所获得的温度,通常将制冷的温度范围划分为以下几个领域:120K以上,普冷;(120~0.3)K,深冷(又称低温);0.3K以下,极低温。制冷和低温技术的温度范围细分的话会有很多个小范围,每一个范围的工程应用列举如下:300-273K,用于热泵、冷却装置、空调装置。273-263K,苛性钾结晶、冷藏运输、运动场的滑冰装置。263-240K,冷冻运输、食品长期保鲜、燃气(丙烷等)液化装置。240-223K,滚筒装置的光滑冻结、矿井工作面冻结。223-200K,低温环境实验室、制取固体二氧化碳(干冰)。200-150K,乙烷、乙烯液化、低温医学和低温生物学。150-100K,天然气液化100-50K,空气液化、分离,稀有气体分离,合成气分离、氢气极其氩气还原,液氧、夜氨、空间低温环境模拟(热沉)。50-15K,氖气和氢气的液化,宇航员出舱空间真空环境模拟(氦低温泵)。15-4K,超导,氦气液化。4-10-63He的液化、4He超流性,Josephson效应、测量技术、物理研究。3.低温制冷技术的主要内容包括哪些方面(如:液化、分离、环境、真空等)?举出两个例子说明之。研究内容可以概括为以下四个方面:(1)研究获得低于环境温度的方法、机理以及与此对应的循环,并对循环进行热力学的分析和计算。(2)研究循环中使用的工质的性质,从而为制冷机和低温装置提供合适的工作介质。因工质在循环中发生状态变化,所以工质的热物理性质是进行循环分析和计算的基础数据。此外,为了使这些工质能实际应用,还必须掌握它们的一般物理化学基础。(3)研究气体的液化和分离技术。例如液化氧、氮、氢、氦等气体,将空气或天然气液化、分离,均涉及一系列的制冷和低温技术。(4)研究所需的各种机械和设备,包括它们的工作原理、性能分析、结构设计。此外还有热绝缘问题,装置的自动化问题,等等。上述前三个方面构成制冷与低温技术原理的基本研究内容,第四方面涉及具体的设备和装置。天然气、石油气、焦炉气以及合成氨驰放气都是多组分混合气。实现它们的分离往往需要在若干个分离级中分阶段进行,在每一级中组分摩尔分数将发生显2著变化,如图8-2所示。多组分气体混合物当被冷却到某一温度水平时,进入一分离器,将已冷凝组分分离出去,然后再进入下一级冷凝器,继续降温并分凝。一个冷凝器和一个分离器组成一个冷凝级。从工艺的角度来考虑,冷凝级数主要是根据需回收组分的要求来确定的,但同时要保证在分凝器中不会出现高沸点组分被冻结的现象。比如采用分凝法分离合成氨驰放气H2-N2-Ar-CH4各组分的分凝如图1所示,当压力为3000Kpa左右,要求回收纯度较高的甲烷,富氩馏份及纯氢时,可分三级进行:第一级冷凝温度控制在150K左右,分离后得到纯度较高的甲烷凝液;第二级终了温度控制在120K左右,分离后得到富氩凝份,第三级终了温度控制在63K左右,可获得较高纯度的氢气。图1分离级示意图制冷循环使用的现有工质不能满足环保要求,需要寻求替代工质。在受限制的5种cFcs制冷剂中,首当其冲的是R12。R12自1931年问世以来,除了近来发现它对大气臭氧层的破坏作用外,一直是一种很理想的制冷剂。它具有不燃、无毒、化学性能稳定、热力学性质优良,与润滑油互溶、对金属不腐蚀等优点,被广泛应用于各种家用冰箱、食品冷藏冷冻设备,中小型冷库、冷藏运输设备及空调设备中。并且由于长期的应用和发展,已使R12系统中各种部件,发展到了十分完善的程度。限制R12的使用到最终停止使用,无疑将对制冷空调产品的生产及使用产生巨大影响。因此积极开展R12替代工质的研究,是当前制冷空调行业中十分紧迫的任务.。第二章低温制冷技术发展回顾2.杜瓦技术有何作用?它的发明意义何在?杜瓦瓶是一个双层玻璃容器,两层玻璃胆壁都涂满银,然后把两层壁间的空气抽掉,形成真空。两层胆壁上的银可以防止辐射散热,真空能防止对流和传导散热,因此盛在瓶里的液体,温度不易发生变化。后来,伯格用镍制造外壳,保护易碎的玻璃瓶胆。杜瓦瓶的绝热保温性能良好,解决了低温液体的储藏问题。34.查找具有标志性的国际、国内发展历史见证点(如机构的成立、重大研究进展、新技术突破)现代的制冷技术,是18世纪后期发展起来的。在此之前,人们很早已懂得冷的利用。我国古代就有人用天然冰冷藏食品和防暑降温。马可·波罗在他的著作《马可·波罗游记》中,对中国制冷和造冰窖的方法有详细的记述。1755年爱丁堡的化学教师库仑利用乙醚蒸发使水结冰。他的学生布拉克从本质上解释了融化和气化现象,提出了潜热的概念,并发明了冰量热器,标志着现代制冷技术的开始。在普冷方面,1834年发明家波尔金斯造出了第一台以乙醚为工质的蒸气压缩式制冷机,并正式申请了英国第6662号专利。这是后来所有蒸气压缩式制冷机的雏型,但使用的工质是乙醚,容易燃烧。到1875年卡利和林德用氨作制冷剂,从此蒸气压缩式制冷机开始占有统治地位。在此期间,空气绝热膨胀会显著降低空气温度的现象开始用于制冷。1844年,医生高里用封闭循环的空气制冷机为患者建立了一座空调站,空气制冷机使他一举成名。威廉·西门斯在空气制冷机中引入了回热器,提高了制冷机的性能。1859年,卡列发明了氨水吸收式制冷系统,申请了原理专利。1910年左右,马利斯·莱兰克发明了蒸气喷射式制冷系统。到20世纪,制冷技术有了更大发展。全封闭制冷压缩机的研制成功(美国通用电器公司);米里杰发现氟里昂制冷剂并用于蒸气压缩式制冷循环以及混合制冷剂的应用;伯宁顿发明回热式除湿器循环以及热泵的出现,均推动了制冷技术的发展。在低温方面,1877年卡里捷液化了氧气;1895年林德液化了空气,建立了空气分离设备;1898年杜瓦用液态空气预冷氢气,然后用绝热节流使氢气成为液体,温度降至20.4K;1908年卡末林·昂纳斯用液态空气和液态氢预冷氦气,再用绝热节流将氦液化,获得4.2K的低温。杜瓦于1892年发明的杜瓦瓶,用于贮存低温液体,为低温领域的研究提供了重要条件。1934年,卡皮查发明了先用膨胀机将氦气降温,再用绝热节流使其液化的氦液化器;1947年柯林斯采用双膨胀机于氦的预冷。大部分的氦液化器现已采用膨胀机,在制冷技术的开发和实际使用中获得广泛的应用。新的降低温度方法的发明,扩大了低温的范围,并进入了超低温领域。德拜和焦克分别在1926年和1927年提出了用顺磁盐绝热退磁的方法获取低温,应用此方法获得的低温现已达到(1×10-3~5×10-3)K;由库提和西蒙等提出的核子绝热去磁的方法可将温度降至更低,库提用此法于1956年获得了20×10-3K。1951年伦敦提出并于1965年研制出的3He-4He混合液稀释制冷法,可达到4×10-3K;1950年泡墨朗切克提出的方法,利用压缩液态3He的绝热固化,达到1×10-3K。第三章低温制冷技术与相关学科的关系---交叉学科的产生与发展42.以材料学科为例,说明低温制冷技术对其影响和促进作用。在哪些方面产生了比较大的变化和进步?陶瓷及陶瓷复合物(如熔融石英、稳定氧化锆、硼化钛、氧化硅等)具有一系列优良性质:比钢轻、强度和韧性好、耐磨、导热系数小、表面光洁度高。将陶瓷用烧结法渗入溶胶体制成零件或用作零件的表面涂釉,可改善零件的性能。聚合材料(工程塑料、合成橡胶和复合材料)用于制冷产品中作为电绝缘材料、减振件和软管材料;利用聚合材料的热塑性,以新工艺通过热定型的方法制造压缩机中的复杂零件(转子、阀片等)。这些新材料的应用,带来产品性能、寿命的提高和成本的降低。3.查找与低温制冷技术相关的交叉学科和新兴学科低温制冷技术与其他学科交叉融合,相辅相成。(1)微电子和计算机技术的应用“机电一体化”浪潮给制冷技术以巨大推动。基础研究方面:计算机仿真制冷循环始于1960年。如今,普冷和低温领域中的各种循环,如:焦-汤节流制冷循环(J-T循环)、斯特林制冷循环、维勒米尔循环(VM循环)、吉福特-麦克马洪循环(G-M循环)、索尔文循环(SV循环)、逆向布雷顿循环、脉管式循环、吸收式制冷循环、热电制冷循环;利用声制冷、光制冷、化学方法制冷的各种循环;以及各种新型的混合型循环,如:热声斯特林发动机驱动小型脉管制冷机的循环均广泛应用计算机仿真技术于循环研究。研究制冷系统的热物理过程、系统及部件的稳态和瞬态特性以及单一工质和混合工质的性质等等,也离不开微电子和计算机技术的应用。在制冷产品的设计制造上:计算机现已广泛用于产品的辅助设计和制造(CAD,CAM)。例如:结构零件设计的有限元法和有限差分法以及用计算机控制精密机械加工。计算机和微处理器对制冷技术的最大影响在于高级自动控制系统的开发。这是一项综合技术,涉及到先进的控制方法、可靠的集成块芯片及专门的控制模块、精良的传感器。当前制冷系统采用电脑控制已极为普遍,控制模式正在发生变化,由简单的机械式控制发展到综合控制,为提高产品性能作出贡献。(2)机器、设备的发展为满足各种用冷的需要,新产品不断推出,商品化程度不断提高。压缩机以高效、可靠、低振动、低噪声、结构简单、成本低为追求目标,由往复式向回转式发展。如新型螺杆式压缩机、涡旋式压缩机、摆线式压缩机等,都具有优良特性和竞争力。在压缩机的驱动装置上,将变频器用于空调、热泵及集中式制冷系统的变速驱动,带来了节能效果。在低温机器和设备方面,前述各种低温循环虽早已提出,但近年来生产开发5的产品在温度,制冷量、启动速度、可靠性、能耗、体积等方面均有长足的进步。现在,氦液化器多数为膨胀型,中型的为双膨胀机组成的柯林斯机器,大型的采用透平膨胀机。辐射制冷、固态制冷已经实际应用。利用3He-4He混合稀释制冷原理的低温制冷机已经商品化,可作为磁制冷机的预冷设备。各种气体分离设备,热交换器,低温恒温器也在高效、紧凑、可靠等方面取得很大的进展。(3)工质继氟里昂和共沸混合工质之后,由于1970年石油危机,节能意识提到重要地位,在开发新工质上引人注目地研究出一系列非共沸工质,收到了节能的效果和满足一些特定需要。由于臭氧耗损和温室效应引起了严峻的环境保护问题,导致了80年代末开始全球禁止CFCs物质,进而波及到HCFC类物质,这既是一次历史性的冲击,同时又提供了新的发展机遇。近年来在替代工质开发及其热物理性质研究方面取得的成就即是证明。当工质处于很低温度时,其量子特性变得十分重要,必须考虑其量子效应,此时循环的性能系数和制冷量不同于经典表达式,而需要通过对量子热力循环的研究得出。制冷和低温技术是充满勃勃生机的学科和工业领域。巨大的市场增长潜力和新技术的交叉渗透为它开辟了广阔的发展天地。第四章低温制冷技术在现代科技中的作用3.超导技术与低温制冷技术有何关系?低温超导和高温超导分别工作在那个温区?两种超导体目前的主要用途是什么?低温制冷技术可以提供超导技术所需要的温区。低温超导一般是在Tc30K的温区下,在强电磁场中,NbTi超导材料用作高能物理的加速器、探测器、等离子体磁约束、超导储能、超导电机及医用磁共振人体成像仪等;Nb3Sn超导材料除用于制作大量小型高磁场(710T)磁体外,还用于制作受控核聚变装置中数米口径的磁体;用Nb及NbN薄膜制成的低温仪器,已用于军事及医学领域检测极弱电磁信号。低温超导材料由于Tc低,必须在液氦温度下使用,运转费用昂贵,故其应用受到限制。具有高临界转变温度(Tc)能在液氮温度条件下工作的超导材料。因主要是氧化物材料,故又称高温氧化物超导材料。高温超导材料不但超导转变温度高,而且成分多是以铜为主要元素的多元金属氧化物,氧含量不确定,具有陶瓷性质。氧化物中的金属元素(如铜)可能存在多种化合价,化合物中的大多数金属元素在一定范围内可以全部或部分被其他金属元素所取代,但仍不失其超导电性。除此之外,高温超导材料具有明显的层状
本文标题:低温制冷技术最新进展期末大作业
链接地址:https://www.777doc.com/doc-3147563 .html