您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 2011全国高中数学竞赛讲义-不等式的证明(练习题)
数学教育网---数学试题-数学教案-数学课件-数学论文-竞赛试题-中高考试题信息§14不等式的证明课后练习1.选择题(1)方程x2-y2=105的正整数解有().(A)一组(B)二组(C)三组(D)四组(2)在0,1,2,…,50这51个整数中,能同时被2,3,4整除的有().(A)3个(B)4个(C)5个(D)6个2.填空题(1)的个位数分别为_________及_________.(2)满足不等式104≤A≤105的整数A的个数是x×104+1,则x的值________.(3)已知整数y被7除余数为5,那么y3被7除时余数为________.(4)求出任何一组满足方程x2-51y2=1的自然数解x和y_________.3.求三个正整数x、y、z满足.4.在数列4,8,17,77,97,106,125,238中相邻若干个数之和是3的倍数,而不是9的倍数的数组共有多少组?5.求的整数解.6.求证可被37整除.7.求满足条件的整数x,y的所有可能的值.数学教育网---数学试题-数学教案-数学课件-数学论文-竞赛试题-中高考试题信息.已知直角三角形的两直角边长分别为l厘米、m厘米,斜边长为n厘米,且l,m,n均为正整数,l为质数.证明:2(l+m+n)是完全平方数.9.如果p、q、、都是整数,并且p>1,q>1,试求p+q的值.课后练习答案1.D.C.2.(1)9及1.(2)9.(3)4.(4)原方程可变形为x2=(7y+1)2+2y(y-7),令y=7可得x=50.3.不妨设x≤y≤z,则,故x≤3.又有故x≥2.若x=2,则,故y≤6.又有,故y≥4.若y=4,则z=20.若y=5,则z=10.若y=6,则z无整数解.若x=3,类似可以确定3≤y≤4,y=3或4,z都不能是整数.4.可仿例2解.5.分析:左边三项直接用基本不等式显然不行,考察到不等式的对称性,可用轮换..的方法.略解:caacbccbabba2,2,2223222同理;三式相加再除以2即得证.评述:(1)利用基本不等式时,除了本题的轮换外,一般还须掌握添项、连用等技巧.如nnxxxxxxxxx2112322221,可在不等式两边同时加上.132xxxxn再如证)0,,(256)())(1)(1(32233cbacbacbcaba时,可连续使用基本不等式.(2)基本不等式有各种变式如2)2(222baba等.但其本质特征不等式两边的次数学教育网---数学试题-数学教案-数学课件-数学论文-竞赛试题-中高考试题信息数及系数是相等的.如上式左右两边次数均为2,系数和为1.6.8888≡8(mod37),∴88882222≡82(mod37).7777≡7(mod37),77773333≡73(mod37),88882222+77773333≡(82+73)(mod37),而82+73=407,37|407,∴37|N.7.简解:原方程变形为3x2-(3y+7)x+3y2-7y=0由关于x的二次方程有解的条件△≥0及y为整数可得0≤y≤5,即y=0,1,2,3,4,5.逐一代入原方程可知,原方程仅有两组解(4,5)、(5,4).8.∵l2+m2=n2,∴l2=(n+m)(n-m).∵l为质数,且n+m>n-m>0,∴n+m=l2,n-m=1.于是l2=n+m=(m+1)+m=2m+1,2m=l2-1,2(l+m+1)=2l+2+2m=l2+2l+1=(l+1)2.即2(l+m+1)是完全平方数.9.易知p≠q,不妨设p>q.令=n,则m>n由此可得不定方程(4-mn)p=m+2,解此方程可得p、q之值.
本文标题:2011全国高中数学竞赛讲义-不等式的证明(练习题)
链接地址:https://www.777doc.com/doc-3046031 .html