您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 工作计划 > 25章阶段总复习第五课时
许镇中心初中电子备课教学设计教学备课人学科数学备课时间2015-12-24课时安排一课时课题25章阶段总复习第五课时教学目标知识与技能目标1.当事件的试验结果不是有限个或结果发生的可能性不相等时,要用频率来估计概率。2.通过试验,理解当试验次数较大时试验频率稳定于理论概率,进一步发展概率观念。过程与方法目标通过实验及分析试验结果、收集数据、处理数据、得出结论的试验过程,体会频率与概率的联系与区别,发展学生根据频率的集中趋势估计概率的能力。情感与态度目标1.通过具体情境使学生体会到概率是描述不确定事件规律的有效数学模型,在解决问题中学会用数学的思维方式思考生活中的实际问题的习惯。2.在活动中进一步发展合作交流的意识和能力。教学重难点教学重点:理解当试验次数较大时,试验频率稳定于理论概率。教学难点:对概率的理解。教学方法采用“精讲.精练”“启发式”教学方法过程课堂学习检测一、填空题1.当实验次数很大时,同一事件发生的频率稳定在相应的______附近,所以我们可以通过多次实验,用同一个事件发生的______来估计这事件发生的概率.(填“频率”或“概率”)2.50张牌,牌面朝下,每次抽出一张记下花色后放回,洗匀后再抽,抽到红桃、黑桃、梅花、方片的频率依次是16%、24%、8%、52%,估计四种花色分别有______张.3.在一个8万人的小镇,随机调查了1000人,其中有250人有订报纸的习惯,则该镇有订报纸习惯的人大约为______万人.4.为估计某天鹅湖中天鹅的数量,先捕捉10只,全部做上记号后放飞.过了一段时间后,重新捕捉40只,其中带有标记的天鹅有2只.据此可估算出该地区大约有天鹅______只.二、选择题5.如果手头没有硬币,用来模拟实验的替代物可用().A.汽水瓶盖B.骰子C.锥体D.两个红球6.在“抛硬币”的游戏中,如果抛了10000次,则出现正面的概率是50%,这是().A.确定的B.可能的C.不可能的D.不太可能的三、解答题7.对某厂生产的直径为4cm的乒乓球进行产品质量检查,结果如下:(1)计算各次检查中“优等品”的频率,填入表中;抽取球数n5010050010005000优等品数m45924558904500优等品频率(2)该厂生产乒乓球优等品的概率约为多少?8.某封闭的纸箱中有红色、黄色的玻璃球若干,为了估计出纸箱中红色、黄色球的数目,小亮向纸箱中放入25个白球,通过多次摸球实验后,发现摸到白球的频率为25%,摸到黄球的频率为40%,试估计出原纸箱中红球、黄球的数目.综合、运用、诊断一、填空题9.一口袋中有6个红球和若干个白球,除颜色外均相同,从口袋中随机摸出一球,记下颜色,再把它放回口袋中摇匀.重复上述实验共300次,其中120次摸到红球,则口袋中大约有______个白球.10.某班级有学生40人,其中共青团员15人,全班分成4个小组,第一小组有学生10人,其中共青团员4人.如果要在班内任选一人当学生代表,那么这个代表恰好在第一小组内的概率为______;现在要在班级任选一个共青团员当团员代表,问这个代表恰好在第一小组内的概率是______.二、解答题11.在5瓶饮料中有2瓶已过了保质期,从5瓶饮料中任取2瓶,则取到的2瓶都过了保质期的可能性是多少?请你用替代物进行模拟实验,估计问题的答案.12.某笔芯厂生产圆珠笔芯,每箱可装2000支.一位质检员误把一些已做标记的不合格产品也放入箱子里,若随机拿出100支,共做10次实验,这100支中不合格笔芯的平均数是5,你能估计箱子里有多少支不合格品吗?若每支合格品的利润为0.5元,如果顾客发现不合格品,需双倍赔偿(即每支赔1元),如果让这箱含不合格品的笔芯走上市场,根据你的估算这箱笔芯是赚是赔?赚多少或赔多少?13.为估计某一池塘中鱼的总数目,小英将100尾做了标记的鱼投入池塘中,几天后,随机捕捞,每次捕捞后做好记录,然后将鱼放回,如此进行20次,记录数据如下:总条数50456048103042381510标记数2132011201总条数53362734432618222547标记数2121211212(1)估计池塘中鱼的总数.根据这种方法估算是否准确?(2)请设计另一种标记的方法,使得估计更加精准.14.小明在乒乓球馆训练完后,不慎将若干白球放入了装有30个橙色球的袋子中,已知两种球除颜色外都相同,你能帮他设计一个方案来估计放进多少白球吗?拓广、探究、思考15.北京联通公司市场部经理小张想了解市内移动公司等对手的市场占有率及用户数量,你能帮他设计一种方案估计出其他公司用户的数量吗?16.一口袋中只有若干粒白色围棋子,没有其他颜色的棋子;而且不许将棋子倒出来数,请你设计一个方案估计出其中白色棋子的数目.测试6利用频率估计概率(二)学习要求当调查估计某事件发生的概率比较困难时,会转化成某种“替代”实际调查的简易方法.课堂掌习检测一、填空题1.用频率来估计概率的值,得到的只是______,但随实验的次数增多,频率值与实际概率值的差会越来越趋近于______,此时对这个事件发生概率值估计的准确性也就越大.2.某单位共有30名员工,现有6张音乐会门票,领导决定分给6名员工,为了公平起见,他将员工们按1~30进行编号,用计算器随机产生______~______之间的整数,随机产生的______个整数对应的编号去听音乐会.3.为了解某城市的空气质量,小明由于时间的限制,只随机记录了一年中73天空气质量情况,其中空气质量为优的有60天,请你估计该城市一年中空气质量为优的有______天.4.利用计算器产生1~5的随机数(整数),连续两次随机数相同的概率是______.二、选择题5.某口袋放有编号1~6的6个球,先从中摸出一球,将它放回口袋中后,再摸一次,两次摸到的球相同的概率是()A.B.C.D.6.某科研小组,为了考查某河流野生鱼的数量,从中捕捞200条,作上标记后,放回河里,经过一段时间,再从中捕捞300条,发现有标记的鱼有15条,则估计该河流中有野生鱼()A.8000条B.4000条C.2000条D.1000条三、解答题7.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:摸球的次数n1001502005008001000摸到白球的次数m5896116295484601摸到白球的频率0.580.640.580.590.6050.601(1)请估计:当n很大时,摸到白球的频率将会接近______;(2)假如你去摸一次,你摸到白球的概率是______,摸到黑球的概率是______;(3)试估算口袋中黑、白两种颜色的球各有多少只?(4)解决了上面的问题,小明同学猛然顿悟,过去一个悬而未决的问题有办法了.这个问题是:在一个不透明的口袋里装有若干个白球,在不允许将球倒出来数的情况下,如何估计白球的个数(可以借助其他工具及用品)?请你应用统计与概率的思想和方法解决这个问题,写出解决这个问题的主要步骤及估算方法.8.某学校有50位女教师,但不知其校男教师的人数,一位同学为了弄清该校男教师的人数,他对每天进校时的第一位老师的性别进行了记录,他一共记录了200次,记录到女教师有80次.你能根据这位同学的记录估计出该校男教师的人数吗?请说明理由.综合、运用、诊断一、填空题9.均匀的正四面体各面分别标有1,2,3,4四个数字,同时抛掷两个这样的四面体,它们着地一面数字相同的概率是______.如果没有正四面体,设计一个模拟实验用来替代此实验:______________________________.10.有4根完全相同的绳子放在盒子中,然后分别将它们的两端相接连成一条绳子,问一根绳子的两端刚好都接有绳子的概率是______.二、解答题11.某数学兴趣小组为了估计π的值设计了投针实验.平行线间的距离α=0.5m,针长为0.1m,向地面随机投了150次,经统计有19次针与平行线相交.试求出针与平行线相交的概率的近似值,并估计出π的值.12.小明在操场上做游戏,他发现地上有一个不规则的封闭图形ABC.为了知道它的面积,小明在封闭图形内划出了一个半径为1m的圆,在不远处向圈内掷石子,且记录如下:掷子次数50次150次300次石子落在⊙O内(含⊙O上)的次数m144393石子落在图形内的次数n1985186你能否求出封闭图形ABC的面积?试试看.13.地面上铺满了正方形的地砖(40cm×40cm).现在向其上抛掷半径为5cm的圆碟,圆碟与地砖间的间隙相交的概率大约是多少?拓广、探究、思考14.设计一个方案,估计10个人中有2个人生日相同的概率是多少?写出你的方案设计.15.一次战争期间,参战的一方的一名间谍深入敌国内部,他侦察到的情报如下:(1)该国参战部队有220个班建制;(2)他在敌国参战部队的不同地点侦察了22个班;22个班中有20个班严重缺员,另外2个班只是基本满员;(3)敌国的士气不振.因此,他向本国发回消息:“敌国已基本失去战斗力”.你认为这名间谍的消息正确吗?答案与提示第二十五章概率初步测试11.(3)、(9)、(10)、(11);(1)、(2)、(4)、(5)、(6)、(7)、(8)、(12);(5);(12).2.D.3.D.4.C.5.C.6.可能发生.虽然这个事件发生的几率很小,但它仍然是可能发生的事件,是不确定事件.7.纸片埋在2号区域的可能性最大.因为2号区域的面积是整个区域面积的而1号、3号区域的面积都是整个区域面积的当随意投入纸片时,落在2号区域的可能性要大.8.这个游戏是公平的.因为黑白两色的直角三角形都全等,且个数也分别相等,所以黑白两色直角三角形面积的和也分别相等,又因为黑白两色弓形的弦长都是直角三角形的斜边,所以黑白两色弓形面积的和也分别相等,因此黑白两色区域面积各占圆面积的50%,即镖扎在黑白两色区域面积的概率均为50%.9.两个人的说法都不同意.两个转盘的面积大小不同,但是蓝色部分所占总面积的比例相同,都是因此预计成功的机会都是25%.10.(1)左图中,可能处于A区域或B区域,可能性最大的是处于B区域.右图中,可能处于1,2,3,4,5,6区域,处于各区域的可能性相同.(2)左图中,投掷结果可能为1,2,3,4,5,6,可能性一样.右图中,投掷结果可能为1或2,可能性一样.(3)投掷结果可能为正面或反面,可能性一样.测试21.频率,概率.2.0.15.3.(1)4,80%;(2)5006,50.1%,4994,49.9%;(3)0.5.4.D.5.A.6.(1)0.75,0.8,0.75,0.78,0.75,0.7;(2)0.75.7.①、③、④.8.9.D.10.D.11.A.12.最后一位数可以是0~9这10个数字中的一个,故正好按对密码的概率是13.出生男孩概率的近似值为0.52,出生女孩概率的近似值为0.48.出生频率出生年份男孩P1女孩P219960.5160.48419970.5180.48219980.5150.48519990.5180.48220000.5160.4845年共计0.5170.48314.不同意.10次的实验次数太少,所得频率不能充分代表概率,所以应多做实验,如100次实验后,用摸到1的次数除以100,才能近似代表概率值.15.不对.三种情况中,出现“一正一反”的有两种可能,其概率应为16.(1)(2)(3)0;(4)1;(5)小.测试31.红.2.(1)(2)3.糖果.4.(1)(2)(3)(4)(5)5.D.6.C.7.B.8.P(摸到2的倍数的卡片)P(摸到3的倍数的卡片)P(摸到5的倍数的卡片)9.中间两位可能是00~99中的一种情况,故一次就可打开手机的概率是10.11.12.13.C.14.D.15.B.16.A.17.(1)值班顺序共有6种排列方法;(2)甲在乙前的有3种;(3)概率为18.可能结果有6种,而猜正确的只能是一种,故概率是19.两张牌面数字之和共有16种
三七文档所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
本文标题:25章阶段总复习第五课时
链接地址:https://www.777doc.com/doc-2924938 .html