您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 专题探索规律与反比例函数new
专题——探索规律与反比例函数一、数据规律类1.已知整数1234,,,,aaaa满足下列条件:10a,21|1|aa,32|2|aa,43|3|aa,…,依次类推,则2012a的值为【】A.1005B.1006C.1007D.20122.某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,则参加比赛的球队应有【】A.7队B.6队C.5队D.4队3.观察下列一组数:32,54,76,98,1110,……,它们是按一定规律排列的,那么这一组数的第k个数是.二、几何变化类4.下列图形都是由同样大小的平行四边形按一定的规律组成,其中,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑥个图形中平行四边形的个数为()A、55B、42C、41D、294.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n(n是大于0的整数)个图形需要黑色棋子的个数是.5.如图所示,在各边长都是1的方格上画着所示的折线,它的各段依次标有①,②,③,④,⑤,…序号,那么序号为2012的线段的长度是.6.如图,在△ABC中,∠ACB=90º,∠B=30º,AC=1,AC在直线l上.将△ABC绕点A顺时针旋转到位置①,可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+3;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=3+3;…,按此规律继续旋转,直到得到点P2012为止,则AP2012=【】A.2011+6713B.2012+6713C.2013+6713D.2014+6713①②③④⑤⑦⑨⑧⑥7.如图,n个边长为1的相邻正方形的一边均在同一直线上,点M1,M2,M3,……Mn分别为边B1B2,B2B3,B3B4,……,BnBn+1的中点,△B1C1M1的面积为S1,△B2C2M2的面积为S2,…△BnCnMn的面积为Sn,则Sn=▲。(用含n的式子表示)7题8题8.如图,在△ABC中,∠ACB=90°,∠A=60°,AC=a,作斜边AB边中线CD,得到第一个三角形ACD;DE⊥BC于点E,作Rt△BDE斜边DB上中线EF,得到第二个三角形DEF;依此作下去…则第n个三角形的面积等于.9.如图,正方形A1B1B2C1,A2B2B3C2,A3B3B4C3,…,AnBnBn+1Cn,按如图所示放置,使点A1、A2、A3、A4、…、An在射线OA上,点B1、B2、B3、B4、…、Bn在射线OB上.若∠AOB=45°,OB1=1,图中阴影部分三角形的面积由小到大依次记作S1,S2,S3,…,Sn,则Sn=.10.如图,在△ABA1中,∠B=20°,AB=A1B,在A1B上取一点C,延长AA1到A2,使得A1A2=A1C;在A2C上取一点D,延长A1A2到A3,使得A2A3=A2D;…,按此做法进行下去,∠An的度数为.10题11题12题三、与坐标有关11.在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,………按这样的规律进行下去,第2012个正方形的面积为【】A.2010)23(5B.2010)49(5C.2012)49(5D.4022)23(512.在平面直角坐标系xOy中,点A1,A2,A3,···和B1,B2,B3,···分别在直线y=kx+b和x轴上.△OA1B1,△B1A2B2,△B2A3B3,…都是等腰直角三角形,如果A1(1,1),A27322,,那么点nA的纵坐标.13.如图,直线y=x,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1,以原点O为圆心,OB1长为半径画弧交x轴于点A2,再过点A2作x轴的垂线交直线于点B2,以原点O为圆心,OB2长为半径画弧交x轴于点A3,……按此作法进行去,点Bn的纵坐标为(n为正整数)。四.反比例函数14.下列选项中,阴影部分面积最小的是【】15.如图,点A是反比例函数6yx(x0)的图象上的一点,过点A作□ABCD,使点B、C在x轴上,点D在y轴上,则平行四边形ABCD的面积为()A.1B.3C.6D.1215题16题17题16.如图,矩形ABCD中,C是AB的中点,反比例函数kyx(k>0)在第一象限的图象经过A、C两点,若△OAB面积为6,则k的值为【】A、2B、4C、8D、1617.如图,已知A11(,y)2,B2(2,y)为反比例函数1yx图像上的两点,动点P(x,0)在x正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是【】A.1(,0)2B.(1,0)C.3(,0)2D.5(,0)218.如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(3a,a)是反比例函数kyx(k>0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为.18题19题20题19.如图,点A在双曲线2y=x0x上,点B在双曲线4y=x0x上,且AB//y轴,点P是y轴上的任意一点,则△PAB的面积为.20.如图,已知动点A在函数4y=x(x0)的图象上,AB⊥x轴于点B,AC⊥y轴于点C,延长CA至点D,使AD=AB,延长BA至点E,使AE=AC.直线DE分别交x轴,y轴于点P,Q.当QE:DP=4:9时,图中的阴影部分的面积等于.21.如图,若点M是x轴正半轴上任意一点,过点M作PQ∥y轴,分别交函数1(0)kyxx和2(0)kyxx的图象于点P和Q,连接OP和OQ.则下列结论正确的是()A.∠POQ不可能等于90°B.12kPMQMkC.这两个函数的图象一定关于x轴对称D.△POQ的面积是1212kk21题22题23题22.如图,过点C(1,2)分别作x轴、y轴的平行线,交直线y=-x+6于A、B两点,若反比例函数y=kx(x>0)的图像与△ABC有公共点,则k的取值范围是()A.2≤k≤9B.2≤k≤8C.2≤k≤5D.5≤k≤823.如图,双曲线xky经过Rt△OMN斜边上的点A,与直角边MN相交于点B,已知OA=2AN,△OAB的面积为5,则k的值是.24.如图,M为双曲线xy3上的一点,过点M作x轴、y轴的垂线,分别交直线y=-x+m于点D、C两点,若直线y=-x+m与y轴交于点A,与x轴相交于点B,则AD•BC的值为.24题25题26题25.如图,正方形A1B1P1P2的顶点P1、P2在反比例函数y=2x(x>0)的图像上,顶点A1、B1分别在x轴和y轴的正半轴上,再在其右侧作正方形P2P3A2B2,顶点P3在反比例函数y=2x(x>0)的图象上,顶点A3在x轴的正半轴上,则点P3的坐标为26.如图,在平面直角坐标系中有一正方形AOBC,反比例函数kyx经过正方形AOBC对角线的交点,半径为(422)的圆内切于△ABC,则k的值为.ABCOxy
本文标题:专题探索规律与反比例函数new
链接地址:https://www.777doc.com/doc-2779428 .html