您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 北师大版高中数学选修2-2第一章《推理与证明》全部教案
教案北师大版高中数学选修2-2第一章《推理与证明》全部教案张云刚1北师大版高中数学选修2-2第一章《推理与证明》全部教案宜君县高级中学张云刚第一课时归纳推理教学目标:1、通过对已学知识的回顾,进一步体会合情推理这种基本的分析问题法,认识归纳推理的基本方法与步骤,并把它们用于对问题的发现与解决中去。2.归纳推理是从特殊到一般的推理方法,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法。教学重点:了解合情推理的含义,能利用归纳进行简单的推理。教学难点:用归纳进行推理,做出猜想。教学过程:一、课堂引入:从一个或几个已知命题得出另一个新命题的思维过程称为推理。见书上的三个推理案例,回答几个推理各有什么特点?都是由“前提”和“结论”两部分组成,但是推理的结构形式上表现出不同的特点,据此可分为合情推理与演绎推理二、新课讲解:1、蛇是用肺呼吸的,鳄鱼是用肺呼吸的,海龟是用肺呼吸的,蜥蜴是用肺呼吸的。蛇,鳄鱼,海龟,蜥蜴都是爬行动物,所有的爬行动物都是用肺呼吸的。2、三角形的内角和是180,凸四边形的内角和是360,凸五边形的内角和是540由此我们猜想:凸边形的内角和是(2)180n3、221222221,,,331332333,由此我们猜想:aambbm(,,abm均为正实数)这种由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概栝出一般结论的推理,称为归纳推理.(简称:归纳)归纳推理的一般步骤:⑴对有限的资料进行观察、分析、归纳整理;⑵提出带有规律性的结论,即猜想;⑶检验猜想。三、例题讲解:例1已知数列na的通项公式21()(1)nanNn,12()(1)(1)(1)nfnaaa,试通过计算(1),(2),(3)fff的值,推测出()fn的值。【学生讨论:】(学生讨论结果预测如下)(1)113(1)1144fa1213824(2)(1)(1)(1)(1))94936faaf12312155(3)(1)(1)(1)(2)(1)163168faaaf实验,观察概括,推广猜测一般性结论2由此猜想,2()2(1)nfnn学生讨论:1)哥德巴赫猜想:任何大于2的偶数可以表示为两个素数的之和。2)三根针上有若干个金属片的问题。四、巩固练习:1、已知111()1()23fnnNn,经计算:35(2),(4)2,(8),22fff(16)3,f7(32)2f,推测当2n时,有__________________________.2、已知:2223sin30sin90sin1502,2223sin5sin65sin1252。观察上述两等式的规律,请你写出一般性的命题,并证明之。3、观察(1)tan10tan20tan20tan60tan60tan101(2)tan5tan10tan10tan75tan75tan51。由以上两式成立,推广到一般结论,写出你的推论。注:归纳推理的几个特点:1.归纳是依据特殊现象推断一般现象,因而,由归纳所得的结论超越了前提所包容的范围.2.归纳是依据若干已知的、没有穷尽的现象推断尚属未知的现象,因而结论具有猜测性.3.归纳的前提是特殊的情况,因而归纳是立足于观察、经验和实验的基础之上.归纳是立足于观察、经验、实验和对有限资料分析的基础上.提出带有规律性的结论.五、教学小结:1.归纳推理是由部分到整体,从特殊到一般的推理。通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法。2.归纳推理的一般步骤:1)通过观察个别情况发现某些相同的性质。2)从已知的相同性质中推出一个明确表述的一般命题(猜想)。3第二课时类比推理●教学目标:(一)知识与能力:通过对已学知识的回顾,认识类比推理这一种合情推理的基本方法,并把它用于对问题的发现中去。(二)过程与方法:类比推理是从特殊到特殊的推理,是寻找事物之间的共同或相似性质,类比的性质相似性越多,相似的性质与推测的性质之间的关系就越相关,从而类比得出的结论就越可靠。(三)情感态度与价值观:1.正确认识合情推理在数学中的重要作用,养成从小开始认真观察事物、分析问题、发现事物之间的质的联系的良好个性品质,善于发现问题,探求新知识。2.认识数学在日常生产生活中的重要作用,培养学生学数学,用数学,完善数学的正确数学意识。●教学重点:了解合情推理的含义,能利用类比进行简单的推理。●教学难点:用类比进行推理,做出猜想。●教具准备:与教材内容相关的资料。●教学过程:一.问题情境从一个传说说起:春秋时代鲁国的公输班(后人称鲁班,被认为是木匠业的祖师)一次去林中砍树时被一株齿形的茅草割破了手,这桩倒霉事却使他发明了锯子.他的思路是这样的:茅草是齿形的;茅草能割破手.我需要一种能割断木头的工具;它也可以是齿形的.这个推理过程是归纳推理吗?二.数学活动我们再看几个类似的推理实例。例1、试根据等式的性质猜想不等式的性质。等式的性质:猜想不等式的性质:(1)a=ba+c=b+c;(1)a>ba+c>b+c;(2)a=bac=bc;(2)a>bac>bc;(3)a=ba2=b2;等等。(3)a>ba2>b2;等等。问:这样猜想出的结论是否一定正确?例2、试将平面上的圆与空间的球进行类比.圆的定义:平面内到一个定点的距离等于定长的点的集合.球的定义:到一个定点的距离等于定长的点的集合.圆球弦←→截面圆直径←→大圆周长←→表面积面积←→体积圆的性质球的性质圆心与弦(不是直径)的中点的连线垂直于弦球心与截面圆(不是大圆)的圆点的连线垂直于截面圆4与圆心距离相等的两弦相等;与圆心距离不等的两弦不等,距圆心较近的弦较长与球心距离相等的两截面圆相等;与球心距离不等的两截面圆不等,距球心较近的截面圆较大圆的切线垂直于过切点的半径;经过圆心且垂直于切线的直线必经过切点球的切面垂直于过切点的半径;经过球心且垂直于切面的直线必经过切点经过切点且垂直于切线的直线必经过圆心经过切点且垂直于切面的直线必经过球心☆上述两个例子均是这种由两个(两类)对象之间在某些方面的相似或相同,推演出他们在其他方面也相似或相同;或其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).简言之,类比推理是由特殊到特殊的推理.类比推理的一般步骤:⑴找出两类对象之间可以确切表述的相似特征;⑵用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想;⑶检验猜想。即例3.在平面上,设ha,hb,hc是三角形ABC三条边上的高.P为三角形内任一点,P到相应三边的距离分别为pa,pb,pc,我们可以得到结论:试通过类比,写出在空间中的类似结论.巩固提高1.(2001年上海)已知两个圆①x2+y2=1:与②x2+(y-3)2=1,则由①式减去②式可得上述两圆的对称轴方程.将上述命题在曲线仍然为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例,推广的命题为------------------------------------------------------------------------------------------------------------------------------------------------2.类比平面内直角三角形的勾股定理,试给出空间中四面体性质的猜想.直角三角形3个面两两垂直的四面体∠C=90°3个边的长度a,b,c2条直角边a,b和1条斜边c∠PDF=∠PDE=∠EDF=90°4个面的面积S1,S2,S3和S3个“直角面”S1,S2,S3和1个“斜面”S1.类比推理是从特殊到特殊的推理,是寻找事物之间的共同或相似性质。类比的性质相观察、比较联想、类推猜想新结论1ccbbaahphphp5似性越多,相似的性质与推测的性质之间的关系就越相关,从而类比得出的结论就越可靠。2.类比推理的一般步骤:第三课时综合法【教学目标】1.理解综合法的思维过程及其特点;2.掌握运用综合法证明数学问题的一般步骤,能运用综合法证明简单的数学问题。【教学重点难】理解综合法的思维过程和特点;运用综合法证(解)题时,找出有效的推理“路线”;综合法:从已知条件出发,利用定义、公理、定理、某些已经证明过的不等式及不等式的性质经过一系列的推理、论证等而推导出所要证明的不等式,这个证明方法叫综合法。(也叫顺推证法或由因导果法)例1、已知a,b,c是不全相等的正数,求证:a(b2+c2)+b(c2+a2)+c(a2+b2)6abc分析:不等式左边含有“a2+b2”的形式,我们可以运用基本不等式:a2+b2≥2ab;还可以这样思考:不等式左边出现有三次因式:a2b,b2c,c2a,ab2,bc2,ca2的“和”,右边有三正数a,b,c的“积”,我们可以运用重要不等式:a3+b3+c3≥3abc.证:∵b2+c2≥2bc,a0,∴a(b2+c2)≥2abc同理:b(c2+a2)≥2abc,c(a2+b2)≥2abc∴a(b2+c2)+b(c2+a2)+c(a2+b2)≥6abc当且仅当b=c,c=a,a=b时取等号,而a,b,c是不全相等的正数∴三式不同时取等号,三式相加得a(b2+c2)+b(c2+a2)+c(a2+b2)6abc本例证法可称为三合一法,当要证的不等式关于字母具有对称形式时,我们常可把其看成是由若干个结构相同但所含字母较少的不等式相加或相乘而得,我们只要先把减了元的较简单的不等式证出,即可完成原不等式的证明。例2、a,b,cR,求证:19)111)((cbacba229)111)((accbbacba323bacacbcba证:1、法一:33abccba,313111abccba,两式相乘即得。6法二:左边)()()(3cbbccaacbaabccbabcbaacba≥3+2+2+2=92、∵3))()((23222accbbaaccbba3))()((13111accbbaaccbba两式相乘即得3、由上题:29)111)((accbbacba∴29111acbcbabac,即:23bacacbcba例3、已知a,b,c都是正数,且a,b,c成等比数列,求证:2222)(cbacba证明:左-右=2(ab+bc-ac),∵a,b,c成等比数列,∴acb2又∵a,b,c都是正数,所以acb0≤caca2,∴bca∴0)(2)(2)(22bcabbbcabacbcab∴2222)(cbacba说明:此题在证明过程中运用了比较法、基本不等式、等比中项性质,体现了综合法证明不等式的特点奎屯王新敞新疆例4、制造一个容积为V(定值)的圆柱形容器,试分别就容器有盖及无盖两种情况,求:怎样选取底半径与高的比,使用料最省?分析:根据1题中不等式左右的结构特征,考虑运用“基本不等式”来证明.对于2题,抓住容积为定值,建立面积目标函数,求解最值,是本题的思路.解:设容器底半径为r,高为h,则V=πr2h,h=2rV.(1)当容器有盖时,所需用料的面积:S=2πr2+2πrh=2πr2+rV2=2πr2+rV+rV≥33232232VrVrVr当且仅当2πr2=rV,即r=32V,h=2rV=2r,取“=”号.故21hr时用料最省.(2)当容器无盖时,所需用料面积:S=πr2+2πrh=πr2+rV2=πr2+rV+rV≥332V当且仅当πr2=rV,r=3V,h=2rV=r.即r=h时用料最省.作业补
本文标题:北师大版高中数学选修2-2第一章《推理与证明》全部教案
链接地址:https://www.777doc.com/doc-2638745 .html