您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 其它文档 > 反比例函数第一课时教案-数学九年级下第26章26.1.1人教版
人教版数学教案九年级下册第二十六章26.1.1第一课时第26章反比例函数26.1.1反比例函数教学目标1.知识与技能会识别相关量之间的反比例关系,理解反比例函数的意义,能确定简单的反比例函数关系式.2.过程与方法通过对实际问题的分析、类比、归纳,培养学生分析问题的能力,并体会函数在实际问题中的应用.3.情感、态度与价值观让学生体会数学来源于生活,又能为社会服务,在实际问题的分析中感受数学美.教学重点:理解反比例函数的意义,确定反比例函数的解析式难点:反比例函数的解析式的确定专家建议:函数是在探索具体问题中数量关系和变化规律的基础上抽象出的数学概念,是研究现实世界变化规律的重要数学模型。在前面已学习过“变化之间的关系”和“一次函数”等内容,对函数已经有了初步的认识,在此基础上讨论反比例函数可以进一步领悟函数的概念,为后续学习产生积极的影响。本节课通过对具体情景的分析,概括出反比例函数的概念。通过例题和举例可以丰富对函数的认识,理解反比例函数的意义。教学方法:自主、合作、探究教学用具:多媒体教学过程:一、复习旧知1.在一个变化的过程中,如果有两个变量x和y,当x在其取值范围内任意取一个值时,y都有唯一确定的值与之对应,则称x为自变量,y叫x的函数.2.一次函数的解析式是:y=kx+b;当b=0时,称为正比例函数.3.一条直线经过点(2,3)、(4,7),则该直线的解析式为.y=2x-1人教版数学教案九年级下册第二十六章26.1.1第一课时这种求函数解析式的方法叫:待定系数法.[教师投影出问题,学生动手完成。]二、新知引入师:提出问题,让学生先独立思考完成,再合作交流,经历探索反比例函数意义的过程。下列问题中,变量间的对应关系可用怎样的函数关系式表示?(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;(3)已知北京市的总面积为1.68×104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化.1、上面问题中,自变量与因变量分别是什么?三个问题的函数表达式分别是什么?生:(1)vt1262(2)xy1000(3)S=n41068.12、这三个函数关系式可以叫正比例函数吗?可以叫一次函数吗?生:不可以,也不可以师:这就是我们这节课要探讨学习的新内容:板书:反比例函数。二、新知讲解1、【分析】上述问题中的函数关系式都有kyx的形式,其中k为常数.归纳一般地,形如kyx(k为常数,且k≠0)的函数称为反比例函数。(inverseprorportionalfunction)注意在kyx中,自变量x是xk分式的分母,当x=0时,分式xk无意义,所以x的取值范围x≠0.探究在上面的三个问题中,两个变量的积均是一个常数(或定值),这也人教版数学教案九年级下册第二十六章26.1.1第一课时是识别的两个量是否成反比例函数关系的关键.注意:三种等价形式:2、巩固练习下列函数中哪些是反比例函数?哪些是一次函数?(1)31yx;⑵y=2x⑶32yx;(4)3yx;(5)1yx;(6)13yx(7)5yx(8)2xy(9)-xy2(10)37xy(11)15yx(12)63yx(13)0.4yx生:反比例函数有:⑶(5)(6)(7)(9)(10)(13)一次函数有:(1)⑵(4)(8)(11)(12)3、例题讲解例1已知y是x的反比函数,并且当x=2时,y=6.(1)写出y关于x的函数解析式(2)当x=4时,求y的值.解:(1)设kyx,因为当x=2时,y=6,所以有62k解得K=12因此12yx(2)把x=4代入12yx得【点拨】(1)由题意,可设y=xk,把x=2,y=6代入即可求得k,进而求得y关于x的函数关系式.(2)在(1)所求得的函数关系式中,把x=4代入即可1234y人教版数学教案九年级下册第二十六章26.1.1第一课时求得y的值.变式:y是x-1的反比例函数,当x=2时,y=-6.(1)写出y与x的函数关系式.(2)求当y=4时x的值.∵当x=3时,y=-6631k631k∴k=-12121yx生:[学生动手练习].例2、y是x的反比例函数,下表给出了x与y的一些值x-112121y24-4-2(1)完成上表;(2)写出这个反比例函数的解析式.解∵y是x的反比例函数,.kyx把x=12y=4代入上式得412k解得:2.k2.yx师:[师生互动,教师示范讲解,板书过程].解:(1)设y与x的函数关系式为:1kyx人教版数学教案九年级下册第二十六章26.1.1第一课时三、当堂训练[学生独立完成,集体进行评议]1.若函数y=(m+1)x|m|-2是反比例函数,则m的值为(B)(A)-1(B)1(C)2或-2(D)-1或12.(桂林·中考)若反比例函数的图象经过点(-3,2),则k的值为(A)(A)-6(B)6(C)-5(D)53.(威海·中考)下列各点中,在函数6yx的图象上的是(C)(A)(-2,-4)(B)(2,3)(C)(-6,1)(D)(-,3)4.下列关系中是反比例函数的是(C)(A)kyx(B)2xy(C)53yx(D)y=5x-15.若点(4,m)在反比例函数8yx(x≠0)的图象上,则m的值是___2___.6.已知A(x1,y1),B(x2,y2)都在6yx的图象上.若x1x2=-3,则y1y2的值为__-12__7.近视眼镜的度数y(度)与镜片焦距x(米)成反比例,已知400度近视眼镜镜片的焦距为0.25米,则眼镜度数y与镜片焦距x之间的函数关系式是10yx。8.反比例函数kyx中,当x的值由4增加到6时,y的值减小3,求这个反比例函数的解析式36yx.四、课堂小结通过本课时的学习,需要我们1.掌握反比例函数的定义,并以此判断是否是反比例函数.2.能根据实际问题中的条件或待定系数法确定反比例函数的解析式.四、板书设计反比例函数人教版数学教案九年级下册第二十六章26.1.1第一课时一、定义:一般地,形如kyx,k≠0的函数,我们称为反比例函数.等价形式:kyxxy=ky=kx-1二、例题分析例1、例2、三、练习四、小结
本文标题:反比例函数第一课时教案-数学九年级下第26章26.1.1人教版
链接地址:https://www.777doc.com/doc-2615164 .html