您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 初二反比例函数复习题及答案
伍老师专用资料第1页反比例函数综合复习题一、选择题1.反比例函数y=xn5图象经过点(2,3),则n的值是().A、-2B、-1C、0D、12.若反比例函数y=xk(k≠0)的图象经过点(-1,2),则这个函数的图象一定经过点().A、(2,-1)B、(-21,2)C、(-2,-1)D、(21,2)3.已知甲、乙两地相距s(km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(h)与行驶速度v(km/h)的函数关系图象大致是()4.若y与x成正比例,x与z成反比例,则y与z之间的关系是().A、成正比例B、成反比例C、不成正比例也不成反比例D、无法确定5.一次函数y=kx-k,y随x的增大而减小,那么反比例函数y=xk满足().A、当x>0时,y>0B、在每个象限内,y随x的增大而减小C、图象分布在第一、三象限D、图象分布在第二、四象限第6题图6.如图,点P是x轴正半轴上一个动点,过点P作x轴的垂线PQ交双曲线y=x1于点Q,连结OQ,点P沿x轴正方向运动时,Rt△QOP的面积().A、逐渐增大B、逐渐减小C、保持不变D、无法确定7.在一个可以改变容积的密闭容器内,装有一定质量m的某种气体,当改变容积V时,气体的密度ρ也随之改变.ρ与V在一定范围内满足ρ=Vm,它的图象如图所示,则该气体的质量m为().A、1.4kgB、5kgC、6.4kgD、7kg第7题图Qpxyot/hv/(km/h)Ot/hv/(km/h)Ot/hv/(km/h)Ot/hv/(km/h)OA.B.C.D.伍老师专用资料第2页8.若A(-3,y1),B(-2,y2),C(-1,y3)三点都在函数y=-x1的图象上,则y1,y2,y3的大小关系是().A、y1>y2>y3B、y1<y2<y3C、y1=y2=y3D、y1<y3<y29.已知反比例函数y=xm21的图象上有A(x1,y1)、B(x2,y2)两点,当x1<x2<0时,y1<y2,则m的取值范围是().A、m<0B、m>0C、m<21D、m>2110.如图,一次函数与反比例函数的图象相交于A、B两点,则图中使反比例函数的值小于一次函数的值的x的取值范围是().A、x<-1B、x>2C、-1<x<0或x>2D、x<-1或0<x<2第10题图二、填空题11.某种灯的使用寿命为1000小时,它的可使用天数y与平均每天使用的小时数x之间的函数关系式为.12.已知反比例函数xky的图象分布在第二、四象限,则在一次函数bkxy中,y随x的增大而(填“增大”或“减小”或“不变”).13.若反比例函数y=xb3和一次函数y=3x+b的图象有两个交点,且有一个交点的纵坐标为6,则b=.14.反比例函数y=(m+2)xm2-10的图象分布在第二、四象限内,则m的值为.15.有一面积为S的梯形,其上底是下底长的31,若下底长为x,高为y,则y与x的函数关系是.16.如图,点M是反比例函数y=xa(a≠0)的图象上一点,过M点作x轴、y轴的平行线,若S阴影=5,则此反比例函数解析式为.第16题图第19题图第20题图伍老师专用资料第3页17.使函数y=(2m2-7m-9)xm2-9m+19是反比例函数,且图象在每个象限内y随x的增大而减小,则可列方程(不等式组)为.18.过双曲线y=xk(k≠0)上任意一点引x轴和y轴的垂线,所得长方形的面积为______.19.如图,直线y=kx(k>0)与双曲线xy4交于A(x1,y1),B(x2,y2)两点,则2x1y2-7x2y1=___________.20.如图,长方形AOCB的两边OC、OA分别位于x轴、y轴上,点B的坐标为B(-320,5),D是AB边上的一点,将△ADO沿直线OD翻折,使A点恰好落在对角线OB上的点E处,若点E在一反比例函数的图象上,那么该函数的解析式是.三、解答题21.如图,已知A(x1,y1),B(x2,y2)是双曲线y=xk在第一象限内的分支上的两点,连结OA、OB.(1)试说明y1<OA<y1+1yk;(2)过B作BC⊥x轴于C,当m=4时,求△BOC的面积.22.如图,已知反比例函数y=-x8与一次函数y=kx+b的图象交于A、B两点,且点A的横坐标和点B的纵坐标都是-2.求:(1)一次函数的解析式;(2)△AOB的面积.伍老师专用资料第4页23.如图,一次函数y=ax+b的图象与反比例函数y=xk的图象交于M、N两点.(1)求反比例函数与一次函数的解析式;(2)根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.24.如图,已知反比例函数y=xk的图象与一次函数y=ax+b的图象交于M(2,m)和N(-1,-4)两点.(1)求这两个函数的解析式;(2)求△MON的面积;(3)请判断点P(4,1)是否在这个反比例函数的图象上,并说明理由.伍老师专用资料第5页25.如图,点P的坐标为(2,23),过点P作x轴的平行线交y轴于点A,交双曲线xky(x0)于点N;作PM⊥AN交双曲线xky(x0)于点M,连结AM.已知PN=4.(1)求k的值.(2)求△APM的面积.26.如图,已知直线12yx与双曲线(0)kykx交于AB,两点,且点A的横坐标为4.(1)求k的值;(2)若双曲线(0)kykx上一点C的纵坐标为8,求AOC△的面积;(3)过原点O的另一条直线l交双曲线(0)kykx于PQ,两点(P点在第一象限),若由点ABPQ,,,为顶点组成的四边形面积为24,求点P的坐标.图12OxAyB伍老师专用资料第6页27.如图8,直线bkxy与反比例函数xky'(x<0)的图象相交于点A、点B,与x轴交于点C,其中点A的坐标为(-2,4),点B的横坐标为-4.(1)试确定反比例函数的关系式;(2)求△AOC的面积.28.已知:如图,正比例函数yax的图象与反比例函数kyx的图象交于点32A,.(1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)Mmn,是反比例函数图象上的一动点,其中03m,过点M作直线MNx∥轴,交y轴于点B;过点A作直线ACy∥轴交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.(第22题图)yxOoADMCB伍老师专用资料第7页参考答案DACBD;CDBDD.11、y=x1000;12、减小;13、5;14、-3;15、y=xs23;16、y=-x5;17、0972119922>mmmm;18、|k|;19、20;20、y=-x12.21、解:(1)过点A作AD⊥x轴于D,则OD=x1,AD=y1,因为点A(x1,y1)在双曲线y=xk上,故x1=1yk,又在Rt△OAD中,AD<OA<AD+OD,所以y1<OA<y1+1yk;(2)△BOC的面积为2.22、解:(1)由已知易得A(-2,4),B(4,-2),代入y=kx+b中,求得y=-x+2;(2)当y=0时,x=2,则y=-x+2与x轴的交点M(2,0),即|OM|=2,于是S△AOB=S△AOM+S△BOM=21|OM|·|yA|+21|OM|·|yB|=21×2×4+21×2×2=6.23、解:(1)将N(-1,-4)代入y=xk,得k=4.∴反比例函数的解析式为y=x4.将M(2,m)代入y=x4,得m=2.将M(2,2),N(-1,-4)代入y=ax+b,得.ba,ba422解得.b,a22∴一次函数的解析式为y=2x-2.(2)由图象可知,当x<-1或0<x<2时,反比例函数的值大于一次函数的值.24.解(1)由已知,得-4=1k,k=4,∴y=x4.又∵图象过M(2,m)点,∴m=24=2,∵y=ax+b图象经过M、N两点,∴,422baba解之得,22ba∴y=2x-2.(2)如图,对于y=2x-2,y=0时,x=1,∴A(1,0),OA=1,∴S△MON=S△MOA+S△NOA=21OA·MC+21OA·ND=21×1×2+21×1×4=3.(3)将点P(4,1)的坐标代入y=x4,知两边相等,∴P点在反比例函数图象上.26.解:(1)∵当x=4时,y=2.∴点A的坐标为(4,2).∵点A是直线与双曲线(k0)的交点,∴k=4×2=8.(2)解法一:如图12-1,∵点C在双曲线上,当y=8时,x=1∴点C的坐标为(1,8).过点A、C分别做x轴、y轴的垂线,垂足为M、N,得矩形DMON.S矩形ONDM=32,S△ONC=4,S△CDA=9,S△OAM=4.xy21xy8伍老师专用资料第8页S△AOC=S矩形ONDM-S△ONC-S△CDA-S△OAM=32-4-9-4=15.(3)∵反比例函数图象是关于原点O的中心对称图形,∴OP=OQ,OA=OB.∴四边形APBQ是平行四边形.∴S△POA=S平行四边形APBQ=×24=6.设点P的横坐标为m(m0且4m),得P(m,).过点P、A分别做x轴的垂线,垂足为E、F,∵点P、A在双曲线上,∴S△POE=S△AOF=4.若0<m<4,如图12-3,∵S△POE+S梯形PEFA=S△POA+S△AOF,∴S梯形PEFA=S△POA=6∴18(2)(4)62mm.解得m=2,m=-8(舍去).∴P(2,4).若m>4,如图12-4,∵S△AOF+S梯形AFEP=S△AOP+S△POE,∴S梯形PEFA=S△POA=6.∴18(2)(4)62mm,解得m=8,m=-2(舍去).∴P(8,1).∴点P的坐标是P(2,4)或P(8,1).28.(1)y=;y=x;(2)0x3;(3)BM=DM,4141m8
本文标题:初二反比例函数复习题及答案
链接地址:https://www.777doc.com/doc-2607332 .html