您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 初中数学中考动点问题集锦
yxEQPCBOA(2007年泰州市)如图5,Rt△ABC中,∠B=90°,∠CAB=30°.它的顶点A的坐标为(10,0),顶点B的坐标为(5,53),AB=10,点P从点A出发,沿A→B→C的方向匀速运动,同时点Q从点D(0,2)出发,沿y轴正方向以相同速度运动,当点P到达点C时,两点同时停止运动,设运动的时间为t秒.(1)求∠BAO的度数.(2)当点P在AB上运动时,△OPQ的面积S(平方单位)与时间t(秒)之间的函数图象为抛物线的一部分,(如图6),求点P的运动速度.(3)求(2)中面积S与时间t之间的函数关系式及面积S取最大值时点P的坐标.(4)如果点P,Q保持(2)中的速度不变,那么点P沿AB边运动时,∠OPQ的大小随着时间t的增大而增大;沿着BC边运动时,∠OPQ的大小随着时间t的增大而减小,当点P沿这两边运动时,使∠OPQ=90°的点P有几个?请说明理由.(2007年吉林省)如图9,在边长为82cm的正方形ABCD中,E、F是对角线AC上的两个动点,它们分别从点A、C同时出发,沿对角线以1cm/s的相同速度运动,过E作EH垂直AC交Rt△ACD的直角边于H;过F作FG垂直AC交Rt△ACD的直角边于G,连结HG、EB.设HE、EF、FG、GH围成的图形面积为,AE、EB、BA围成的图形面积为这里规定:线段的面积为0).E到达C,F到达A停止.若E的运动时间为x(s),解答下列问题:(1)当0X(2)①若y是与的和,求y与x之间的函数关系式;(图10为备用图)②求y的最大值.练习1、已知抛物线2yaxbxc经过53(33)02PE,,,及原点(00)O,.(1)求抛物线的解析式.(由一般式...得抛物线的解析式为225333yxx)(2)过P点作平行于x轴的直线PC交y轴于C点,在抛物线对称轴右侧且位于直线PC下方的抛物线上,任取一点Q,过点Q作直线QA平行于y轴交x轴于A点,交直线PC于B点,直线QA与直线PC及两坐标轴围成矩形OABC.是否存在点Q,使得OPC△与PQB△相似?若存在,求出Q点的坐标;若不存在,说明理由.(3)如果符合(2)中的Q点在x轴的上方,连结OQ,矩形OABC内的四个三角形OPCPQBOQPOQA,,,△△△△之间存在怎样的关系?为什么?练习2、如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,点A在x轴上,点C在y轴上,将边BC折叠,使点B落在边OA的点D处。已知折叠55CE,且3tan4EDA。(1)判断OCD△与ADE△是否相似?请说明理由;(2)求直线CE与x轴交点P的坐标;(3)是否存在过点D的直线l,使直线l、直线CE与x轴所围成的三角形和直线l、直线CE与y轴所围成的三角形相似?如果存在,请直接写出其解析式并画出相应的直线;如果不存在,请说明理由。练习3、在平面直角坐标系xOy中,已知二次函数2(0)yaxbxca的图象与x轴交于AB,两点(点A在点B的左边),与y轴交于点C,其顶点的横坐标为1,且过点(23),和(312),.(1)求此二次函数的表达式;(由一般式...得抛物线的解析式为223yxx)(2)若直线:(0)lykxk与线段BC交于点D(不与点BC,重合),则是否存在这样的直线l,使得以BOD,,为顶点的三角形与BAC△相似?若存在,求出该直线的函数表达式及点D的坐标;若不存在,请说明理由;(10)(30),(03)ABC,,,,(3)若点P是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较锐角PCO与ACO的大小(不必证明),并写出此时点P的横坐标px的取值范围.练习4(2008广东湛江市)如图所示,已知抛物线21yx与x轴交于A、B两点,与y轴交于点C.(1)求A、B、C三点的坐标.(2)过点A作AP∥CB交抛物线于点P,求四边形ACBP的面积.Oxy练习2图CBEDOyCxBA练习3图CBA练习4图Py(3)在x轴上方的抛物线上是否存在一点M,过M作MGx轴于点G,使以A、M、G三点为顶点的三角形与PCA相似.若存在,请求出M点的坐标;否则,请说明理由.练习5、已知:如图,在平面直角坐标系中,ABC△是直角三角形,90ACB,点AC,的坐标分别为(30)A,,(10)C,,3tan4BAC.(1)求过点AB,的直线的函数表达式;点(30)A,,(10)C,,B(13),,3944yx(2)在x轴上找一点D,连接DB,使得ADB△与ABC△相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,如PQ,分别是AB和AD上的动点,连接PQ,设APDQm,问是否存在这样的m使得APQ△与ADB△相似,如存在,请求出m的值;如不存在,请说明理由.例1(2008福建福州)如图,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),解答下列问题:(1)当t=2时,判断△BPQ的形状,并说明理由;(2)设△BPQ的面积为S(cm2),求S与t的函数关系式;(3)作QR//BA交AC于点R,连结PR,当t为何值时,△APR∽△PRQ?分析:由t=2求出BP与BQ的长度,从而可得△BPQ的形状;例2(2008浙江温州)如图,在RtABC△中,90A,6AB,8AC,DE,分别是边ABAC,的中点,点P从点D出发沿DE方向运动,过点P作PQBC于Q,过点Q作QRBA∥交AC于R,当点Q与点C重合时,点P停止运动.设BQx,QRy.(1)求点D到BC的距离DH的长;(2)求y关于x的函数关系式(不要求写出自变量的取值范围);(3)是否存在点P,使PQR△为等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由.例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB的弧AB上,有一个动点P,PH⊥OA,垂足为H,△OPH的重心为G.(1)当点P在弧AB上运动时,线段GO、GP、GH中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PHx,GPy,求y关于x的函数解析式,并写出函数的定义域(即自ACOBxy变量x的取值范围).(3)如果△PGH是等腰三角形,试求出线段PH的长.例2(2006年·山东)如图2,在△ABC中,AB=AC=1,点D,E在直线BC上运动.设BD=,xCE=y.(1)如果∠BAC=30°,∠DAE=105°,试确定y与x之间的函数解析式;(2)如果∠BAC的度数为,∠DAE的度数为,当,满足怎样的关系式时,(1)中y与x之间的函数解析式还成立?试说明理由.例4(2004年·上海)如图,在△ABC中,∠BAC=90°,AB=AC=22,⊙A的半径为1.若点O在BC边上运动(与点B、C不重合),设BO=x,△AOC的面积为y.(1)求y关于x的函数解析式,并写出函数的定义域.(2)以点O为圆心,BO长为半径作圆O,求当⊙O与⊙A相切时,△AOC的面积.(09年徐汇区)如图,ABC中,10ACAB,12BC,点D在边BC上,且4BD,以点D为顶点作BEDF,分别交边AB于点E,交射线CA于点F.(1)当6AE时,求AF的长;(2)当以点C为圆心CF长为半径的⊙C和以点A为圆心AE长为半径的⊙A相切时HMNGPOAB图1AEDCB图2ABCO图8HFABCEDABCDEOlA′,求BE的长;(3)当以边AC为直径的⊙O与线段DE相切时,求BE的长在矩形ABCD中,AB=3,点O在对角线AC上,直线l过点O,且与AC垂直交AD于点E.(1)若直线l过点B,把△ABE沿直线l翻折,点A与矩形ABCD的对称中心A'重合,求BC的长;(2)若直线l与AB相交于点F,且AO=41AC,设AD的长为x,五边形BCDEF的面积为S.①求S关于x的函数关系式,并指出x的取值范围;②探索:是否存在这样的x,以A为圆心,以x43长为半径的圆与直线l相切,若存在,请求出x的值;若不存在,请说明理由.如图,在ABC中,6,5BCACAB,D、E分别是边AB、AC上的两个动点(D不与A、B重合),且保持BCDE∥,以DE为边,在点A的异侧作正方形DEFG.(1)试求ABC的面积;(2)当边FG与BC重合时,求正方形DEFG的边长;(3)设xAD,ABC与正方形DEFG重叠部分的面积为y,试求y关于x的函数关系式,并写出定义域;(4)当BDG是等腰三角形时,请直接写出AD的长.例1:已知⊙O的弦AB的长等于⊙O的半径,点C在⊙O上变化(不与A、B)重合,求∠ACB的大小.分析:点C的变化是否影响∠ACB的大小的变化呢?我们不妨将点C改变一下,如何变化呢?可能在优弧AB上,也可能在劣弧AB上变化,显然这两者的结果不一样。那么,当点C在优弧AB上变化时,∠ACB所对的弧是劣弧AB,它的大小为劣弧AB的一半,因此很自然地想到它的圆心角,连结AO、BO,则由于AB=OA=OB,即三角形ABC为等边三角形,则∠AOB=600,则由同弧所对FGECABD的圆心角与圆周角的关系得出:∠ACB=21∠AOB=300,当点C在劣弧AB上变化时,∠ACB所对的弧是优弧AB,它的大小为优弧AB的一半,由∠AOB=600得,优弧AB的度数为3600-600=3000,则由同弧所对的圆心角与圆周角的关系得出:∠ACB=1500,例2:(2004年广州市中考题第11题)如图,⊙O1和⊙O2内切于A,⊙O1的半径为3,⊙O2的半径为2,点P为⊙O1上的任一点(与点A不重合),直线PA交⊙O2于点C,PB切⊙O2于点B,则PCBP的值为(A)2(B)3(C)23(D)26例4(2003年广州市中考试题)在⊙O中,C为弧AB的中点,D为弧AC上任一点(与A、C不重合),则(A)AC+CB=AD+DB(B)AC+CBAD+DB(C)AC+CBAD+DB(D)AC+CB与AD+DB的大小关系不确定例6:如图,正方形ABCD的边长为4,点M在边DC上,且DM=1,N为对角线AC上任意一点,则DN+MN的最小值为.例8:如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2厘米/秒的速度移动;点Q沿DA边从点D开始向点A以1厘米/秒的速度移动。如果P、Q同时出发,用t秒表示移动的时间(0≤t≤6),那么:(1)当t为何值时,三角形QAP为等腰三角形?(2)求四边形QAPC的面积,提出一个与计算结果有关的结论;OBACCO1O2PBAMNDCBACBPDAQ(3)当t为何值时,以点Q、A、P为顶点的三角形与△ABC相似?例1.在中,AC=5,BC=12,∠ACB=90°,P是AB边上的动点(与点A、B不重合),Q是BC边上的动点(与点B、C不重合),当PQ与AC不平行时,△CPQ可能为直角三角形吗?若有可能,请求出线段CQ的长的取值范围;若不可能,请说明理由。(03年广州市中考)例2.如图2,直角梯形ABCD中,AD∥BC,∠B=90°,AD+BC<DC,若腰DC上有动点P,使AP⊥BP,则这样的点有多少个?例3.如图5,△ABC的外部有一动点P(在直线BC上方),分别连结PB、PC,试确定∠BPC与∠BAC的大小关系。(02年广州市中考)例1(2006年福建晋州)如图,在平行四边形ABCD中,AD=4cm,∠A=60°,BD⊥AD.一动点P从A出发,以每秒1cm的速度沿A→B→C的路线匀速运动,过点P作直线PM,使PM⊥AD.1.当点P运动2秒时,设直线PM与AD相交于点E,求△APE的面积;2.当点P运动2秒时,另一动点Q也从A出发沿A→B的路线运动,且在AB上以每秒1cm的速度匀速运动,(当P、Q中的某一点到达终点,则两点都停止运动.)过Q作直线QN,使QN∥PM,设点Q运动
三七文档所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
本文标题:初中数学中考动点问题集锦
链接地址:https://www.777doc.com/doc-2606211 .html